

Curriculum Structure and Curriculum Content for the Batch: 2023-27

Department: Computer Science and Engineering Program: BE- Computer Science and Engineering

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives	jectives 5
Program Educational Objectives -PEO's	5
Curriculum Structure-Overall	7
Curriculum Structure-Semester wise	8
Semester - I	8
Semester - II	9
Semester - III	10
Semester - IV	11
Semester - V	12
Semester - VI	13
Semester - VII	14
Semester - VIII	15
List of Open Electives Error! Bookman	k not defined.
List of Program Electives	16
Curriculum Content- Course wise	17

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education—recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the Department

Department Vision

The KLE Tech- School of Computer Science will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in a wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

- PEO: 1. Graduates will demonstrate peer recognized technical competency to solve analyze, design, develop, deploy and maintain computing solutions for contemporary problems.
- PEO: 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- PEO: 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education and self-study.
- PEO: 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

- PO 1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- PO 2: **Problem Analysis:** Identify, formulate, review research literature and analyse complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4).
- PO 3: **Design/Development of Solutions:** Design creative solutions for complex engineering problems and design/develop systems, components, or processes to meet identified needs with consideration for public health and safety, whole-life cost, net-zero carbon, culture, society, and environment as required (WK5).
- PO 4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- PO 5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6).
- PO 6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment.(WK1, WK5, and WK7).
- PO 7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9).
- PO 8: Individual and Collaborative Team Work: Function effectively as an individual, and as a member or leader in diverse/ multidisciplinary teams.
- PO 9: **Communication:** Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
- PO 10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to

one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO 11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8).

Program Specific Objectives -PSO's

PSO 1: **Software System Construction:** Apply design and development principles in the construction of software systems of varying complexity.

PSO 2: **Domain-specific knowledge:** An ability to develop AI based solutions in the domain of data, system and network engineering.

Curriculum Structure-Overall

CSE					Total Pro	gram Credit: 176(4	4+132)	Year: 2023	3 - 27		
	Ţ	II	III	IV	V	VI	VII	VII	II		
	Single Variable Calculus 18EMAB101 (4-1-0)	Multivariable Calculus 18EMAB102 (4-1-0)	Linear Algebra 24EMAB208 (3-0-1)	Probability and Statistics 24EMAB209 (3-1-0)	Machine Learning and Deep Learning 24ECSC306 (2-0-2)	Generative AI 25ECSC314 (3-0-1)	Big Data Analytics 24ECSC401(2-0-1)	PE-6 XXECSE4XX (3-0-0)	Internship Training		
	Engineering Physics 22EPHB101 (3-0-0)	Engineering Chemistry 22ECHB102 (3-0-0)	Discrete Mathematical Structures 24ECSC202 (3-1-0)	Computer Networks-1 24ECSC207(3-1-0)	Computer Networks-2 24ECSC303 (3-0-0)	Wireless and Mobile Networks 25ECSC311(3-0-1)	Cryptography & Network Security (24ECSC403)(2-0-1)	OE XXECSO4XX (3-0-0)	25ECSI495 (0-0-6)		
0	Engineering Mechanics 15ECVF101 (4-0-0)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Computer Organization and Architecture 24ECSC201 (3-0-1)	Object Oriented Programming 24ECSC204 (3-0-0)	Web Technologies Lab 24ECSP304 (0-0-2)	Embedded Systems and IoT 24ECSC308 (2-0-1)	PE – 4 XXECSE4XX (3-0-0)	Capstone Proje 20ECSW402 / Inter			
rse code	C Programming for Problem Solving 18ECSP101 (0-0-3)	Engineering Exploration 22ECRP101 (0-0-3)	Design and Analysis of Algorithms 24ECSC205 (4-0-0)	Principles of Compiler Design 19ECSC203(3-1-0)	Cloud Computing 25ECSC305 (2-0-1)	PE-2 XXECSE3XX (3-0-0)	PE-5 XXECSE4XX (3-0-0)	Project 25E (0-0-:			
with course	Basic Electrical Engineering 18EEEF101 (3-0-0)	Basic Electronics 18EECF101 (4-0-0)	Database Management System 15ECSC208 (4-0-0)	Operating System Principles and Programming 24ECSC209 (4-0-1)	Software Engineering 25ECSC301 (3-0-0)	PE-3 XXECSE3XX (3-0-0)	Senior Design Project 20ECSW401 (0-0-6)				
Course	Design Thinking for Social Innovation 20EHSP101 (0-1-1)	Basic Mechanical Engineering 22EMEF101 (2-1-0)	Database Applications Lab 15ECSP204 (0-0-1.5)	Exploratory Data Analysis 24ECSC210 (2-0-2)	Computer Networks Lab 25ECSP305 (0-0-1)	Minor Project 24ECSW302 (0-0-6)	CIPE & EVS 15EHSA401 (Audit)				
	Applied Physics Lab (0-0-1) 21EPHP101	Professional Communication (1-1-0) 15EHSH101	Algorithms Lab 24ECSP205 (0-0-2)	Object Oriented Programming Lab 24ECSP203 (0-0-1.5)	Mini Project 15ECSW301 (0-0-3)						
					PE-1 XXECSE3XX (3-0-0)	Professional Aptitude & Logical Reasoning 16EHSC301 (3-0-0)					
			Corporate Communication 24EHSA201 (Audit)	Problem Solving & Analysis 24EHSA202 (Audit)	Arithmetical Thinking & Analytical Reasoning 23EHSA303 (Audit)	Industry Readiness & Leadership Skills (23EHSA304)(Audit)					
Cre dits	21	23	23.5	25.5	22	26	18	17	7		

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	3	80	20	100	3 hours
7	21EPHP101	Applied Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
		Total		14-2-5	21	27	440	260	700	

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
4	22ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	22EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	2 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
		Total	•	14-3-6	23	32	410	290	700	

Semester- III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24EMAB208	<u>Linear Algebra</u>	BS	3-0-1	4	4	50	50	100	3 hours
2	24ECSC202	Discrete Mathematical Structures	PC	3-1-0	4	5	50	50	100	3 hours
3	24ECSC201	Computer Organization and Architecture	PC	3-0-1	4	5	50	50	100	3 hours
4	24ECSC205	Design and Analysis of Algorithms	PC	4-0-0	4	4	50	50	100	3 hours
5	15ECSC208	Database Management System	PC	4-0-0	4	4	50	50	100	3 hours
6	15ECSP204	Database Applications Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
7	24ECSP205	Algorithms Lab	PC	0-0-2	2	4	80	20	100	3 hours
8	24EHSA201	Corporate Communication	HSS	0-0-0	0	1	100	0	100	3 hours
	TOTAL			17-1-5.5	23.5	30	510	290	800	

Semester- IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24EMAB209	Probability and Statistics	BS	3-1-0	4	5	50	50	100	3 hours
2	24ECSC207	Computer Networks-1	PC	3-1-0	4	5	50	50	100	3 hours
3	24ECSC204	Object Oriented Programming	PC	3-0-0	3	3	50	50	100	3 hours
4	19ECSC203	Principles of Compiler Design	PC	3-1-0	4	5	50	50	100	3 hours
5	24ECSC209	Operating System Principles and Programming	PC	4-0-1	5	6	50	50	100	3 hours
6	24ECSC210	Exploratory Data Analysis	PC	2-0-2	4	6	50	50	100	2 hours
7	24ECSP203	Object Oriented Programming Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	24EHSA202	Problem Solving & Analysis	HSS	0-0-0	0	1	100	0	100	3 hours
		TOTAL		18-3-4.5	25.5	34/33	480	320	800	

Semester- V

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24ECSC306	Machine Learning and Deep Learning	PC	2-0-2	4	6	50	50	100	2 hours
2	24ECSC303	Computer Networks - 2	PC	3-0-0	3	3	50	50	100	3 hours
3	24ECSP304	Web Technologies Lab	PC	0-0-2	2	4	80	20	100	3 hours
4	25ECSC305	Cloud Computing	PC	2-0-1	3	4	67	33	100	2 hours
5	25ECSC301	Software Engineering	PC	3-0-0	3	3	50	50	100	3 hours
6	25ECSP305	Computer Networks Lab	PC	0-0-1	1	2	80	20	100	2 hours
7	15ECSW301	Mini Project	PW	0-0-3	3	3	50	50	100	3 hours
8	XXECSE3XX	Professional Elective-1	PE	3-0-0	3	3	50	50	100	3 hours
9	23EHSA303	Arithmetical Thinking & Analytical Reasoning	HSS	0-0-0	0	1	100	0	100	3 hours
		TOTAL		13-0-9	22	29	577	323	900	

Semester- VI

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	25ECSC314	Generative AI	PC	3-0-1	4	5	63	37	100	3 hours
2	25ECSC311	Wireless and Mobile Networks	PC	3-0-1	4	5	63	37	100	3 hours
3	24ECSC308	Embedded Systems and IoT	PC	2-0-1	3	4	67	33	100	2 hours
4	XXECSE3XX	Professional Elective-2	PE	3-0-0	3	3	50	50	100	3 hours
5	XXECSE3XX	Professional Elective-3	PE	3-0-0	3	3	50	50	100	3 hours
6	24ECSW302	Minor Project	PW	0-0-6	6	3	50	50	100	3 hours
7	16EHSC301	Professional Aptitude & Logical Reasoning	HSS	3-0-0	3	3	50	50	100	3 hours
8	23EHSA304	Industry Readiness & Leadership Skills	HSS	0-0-0	0	1	100	0	100	3 hours
				17-0-9	26	27	493	307	800	

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
1	24ECSC404	Big Data Analytics	PC	2-0-1	3	4	67	33	100	2 hours
2	24ECSC403	Cryptography & Network Security	PC	2-0-1	3	4	67	33	100	2 hours
3	XXECSE4XX	Professional Elective-4	PE	3-0-0	3	3	50	50	100	3 hours
4	XXECSE4XX	Professional Elective-5	PE	3-0-0	3	3	50	50	100	3 hours
5	20ECSW401	Senior Design Project	PW	0-0-6	6	3	50	50	100	3 hours
6	15EHSA401	CIPE & EVS (Audit)	HSS	0-0-0	0	2	50	50	100	3 hours
	TOTAL			10-0-8	18	19	300	300	600	

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	XXECSE4XX	<u>Professional Elective-6</u>	PE	3-0-0	3	3	50	50	100	3 hours
2	XXECSO4XX	Open Elective	OE	3-0-0	3	3	50	50	100	3 hours
3*	25ECSI495	Internship Training	PW	0-0-6	6	12	50	50	100	3hours
4	25ECSW496	Internship Project	PW	0-0-11	11	22	50	50	100	3 hours
4	20ECSW402	<u>Capstone Project</u>	T VV	0-0-11	11	22	30	30	100	3 Hours
	TOTAL			6-0-17	17	34	100	100	200	

Semester	l	II	III	IV	V	VI	VII	VIII	Total
Credits	21	23	23.5	25.5	22	26	18	17	176

^{*}Note students can either choose (1, 2 & 4(Capstone Project) or (3 & 4(Internship Project).)

List of Program Electives

Sr. No	Name of the Course	Course Code
	3 rd Year (Professional Electives- 1, 2 & 3)	,
	Data Engineering	
1.	Signals & Systems (3-0-0)	21ECSE313
2.	Fundamentals of Image & Video Processing (2-0-1)	24ECSE312
3.	Computer Vision (3-0-0)	24ECSE339
4.	Responsible AI (2-0-1)	25ECSE326
5.	Multimodal AI (2-0-1)	25ECSE327
6.	Al in Healthcare (2-0-1)	25ECSE328
7.	Informatica - Intelligent Data Management Cloud (1-0-2)	24ECSE322
8.	Augmented and virtual reality (2-0-1)	25ECSE329
9.	Information Retrieval (2-0-1)	25ECSE330
10.	Agentic AI (2-0-1)	25ECSE331
11.	Reinforcement Learning (2-0-1)	25ECSE332
12.	Human Computer Interaction (2-0-1)	25ECSE333
	Networking	
1.	Multimedia Networks (3-0-0)	21ECSE311
2.	Cyber security (3-0-0)	25ECSE325
3.	Software Defined Networks (2-0-1)	25ECSE334
4.	Block chain and Distributed Ledgers (2-0-1)	24ECSE324
5.	Security Operations (2-0-1)	24ECSE321
6.	Edge Computing (2-0-1)	24ECSE323
7.	Web Security (2-0-1)	25ECSE335
	Systems Engineering	
1.	Computational Medicine (3-0-0)	24ECSE340
2.	The ARM Architecture (2-1-0)	19ECSE308
3.	Embedded Intelligent Systems (1-0-2)	24ECSE302
4.	Robotic Process Automation Design & Development (2-0-1)	25ECSE301
5.	Parallel Computing (3-0-0)	17ECSE307
6.	Quantum Computing Fundamentals (3-0-0)	17ECSE306
7.	Applied Computational Medicine (2-0-1)	24ECSE320
8.	Quantum Algorithms and Cryptography (2-0-1)	25ECSE336
	Electives for Skill Enhancement	
1.	Algorithmic Problem Solving (2-0-4)	24ECSE309
2.	Semantic Web (3-0-0)	19ECSE303
3.	<u>DevOps</u> (1-0-2)	24ECSE310
4.	MLOps (1-0-2)	25ECSE337
5.	Theories of Intelligent Systems (2-0-1)	25ECSE338
_		

Curriculum Content- Course wise

Semester - I

Program: Bachelor of Engineering			Semester - I			
Course Title: Single Variable Calculus			Course Code: 18EMAB101			
L-T-P:	4-1-0	Credits: 05	Contact Hours: 6hrs	/week		
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100			
Teach	Teaching Hours: 50 Tutorial/Practical: 28hrs Exam Duration: 3hr			s		
		Unit I				
	Introduction to Mathematical Modeling: What is Mathematical modeling,					
1	why Mathematical mo	odeling, use of Mathematical m	nodeling, Process of	04 hrs		
	mathematical modelin	g, types of modeling with simpl	e examples			
	Functions, Graphs	and Models: Functions, ty	pes of functions,			
2	transformations and m	nodels (Linear, exponential, trigo	onometric).	05 hrs		
	MatLab: Graphing fun	ctions, Domain-Range and Inter	preting the models			
	Calculus of functions	and models: Limit of a fund	tion, Infinite limits-			
	graph, Continuity and discontinuity, Intermediate value theorem					
	statement, Roots of the equation using Bisection Method and Newton-					
3	Raphson Method					
	Interpretation of derivative as a rate of change, All the rules of derivatives					
	(List only), Maxima, Minima and optimization problems. Curvature and					
	Radius of Curvature, Ir	ideterminate forms, L- Hospital	's rule-Examples			
	MatLab: optimization problems. Curvature problems					
		Unit II				
	Infinite Series: Defini	tion, Convergence of series, Tes	sts of convergence –			
4	p-series, Alternating series. Power series, radius of convergence, Taylor's					
_	and Maclaurin's series, Applications of Taylor's and Maclaurin's series					
	MatLab: Convergence of series					
	Integral calculus: Trac	ing of standard curves in Cartesi	an form, Parametric			
	form and Polar form; Beta and gamma function, relation between them,					
	evaluation of integrals using Beta and gamma functions; Applications to					
5	find arc length, Area, Volume and surface area (Cartesian, parametric and					
	polar curves). Approximate integration- Trapezoidal rule, Simpson's 1/3					
	rule					
	MatLab: problems on	arc length, area, volume and su	rface area			

	Unit III	
6	Ordinary differential equations of first order: (a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method (b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies. MatLab: Solve differential equations	10 hrs

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7e 2010

Reference Books:

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

Prog	gram: Bachelor of Engin	eering	Semester - I		
Course Title: Engineering Physics Course Code: 22EP		HB101			
L-T-	P: 3-0-0	Credits:3	Contact Hrs: 3hrs/week		
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Tead	eaching Hrs: 40 Tutorial/Practical: Exam Duration: 3 Hrs				
Unit I					
	Conduction in semicor	nductors			
	Atomic theory: The ato	om, electron orbits and ene	ergy levels, energy bands,		
	Conduction in solids: E	lectron motion and hole tra	ansfer, conventional current		
	and electron flow				
	Conductors, semicond	uctors and insulators: Bon	ding force between atoms,		
1	Energy bands in differe	ent materials.		05 hrs	
1	n-type and p-type	Semiconductors: Doping,	n-Type material, p-Type		
	material, Majority and	d minority charge carriers,	Effects of heat and light,		
	charge carrier density.				
	Semiconductor conductivity: Drift current, diffusion current, charge carrier				
	velocity, conductivity, Hall Effect.				
	(Text 1 Page No 1-33)				
	Junctions				
	The pn-Junctions: June	ction of p-Type and n-Type	, Barrier voltage, depletion		
	region, Qualitative the	ory of p-n Junction			
	Biased junctions: Reverse biased junction, forward biased junction, junction				
	temperature effects.				
	Junction currents and voltages: Shockley equation, junction currents,				
	junction voltages.				
	p-n Junction Diode characteristics and parameters: Forward and reverse				
2	characteristics, diode parameters.				
	Diode approximations: Ideal diode and practical diodes, piecewise linear				
	characteristics, DC equivalent circuits.				
	DC load line analysis: DC load line, Q-Point, calculating load resistance and				
	supply voltage.				
	-	Diode power dissipation	n, forward voltage drop,		
	dynamic resistance.				
		•	quivalent circuits (Reverse		
		ised), reverse recovery time			
	Diode specifications: Diode data sheets, low power diodes, rectifier diodes				

Diode testing: Ohmmeter tests, use of digital meter, plotting diode characteristics.

Zener diodes: Junction break down, circuit symbols and packages,

characteristics and parameters, data sheet, equivalent circuits.

(Text 1 Page No 34-71)

Unit II

Electrostatics

3

Review on vectors: Coordinate Systems, Vector and Scalar Quantities, Properties of Vectors, Components of a Vector and Unit Vectors (Text 2 Page No 59-77)

Electric Fields: Properties of Electric Charges, Charging Objects by Induction, Coulomb's Law, Analysis Model: Particle in a Field (Electric), Electric Field of a Continuous Charge Distribution, Electric Field Lines Motion of a Charged Particle in a Uniform Electric Field

Gauss's Law: Electric Flux, Gauss's Law, Application of Gauss's Law to Various Charge Distributions, Conductors in Electrostatic Equilibrium

Electric Potential: Electric Potential and Potential Difference, Potential Difference in a Uniform Electric Field, Electric Potential and Potential Energy Due to Point Charges, Obtaining the Value of the Electric Field from the Electric Potential, Electric Potential Due to Continuous Charge Distributions Electric Potential Due to a Charged Conductor, Applications of Electrostatics Capacitance and Dielectrics: Definition of Capacitance, Calculating Capacitance, Combinations of Capacitors, Energy Stored in a Charged Capacitor, Capacitors with Dielectrics, Electric Dipole in an Electric Field, An Atomic Description of Dielectrics

(Text 2 Page No 690-807)

Unit - III

Electromagnetics

Magnetic Fields: Analysis Model: Particle in a Field (Magnetic), Motion of a Charged Particle in a Uniform Magnetic Field, Applications Involving Charged Particles Moving in a Magnetic Field, Magnetic Force Acting on a Current-Carrying Conductor, Torque on a Current Loop in a Uniform Magnetic Field,

Sources of the Magnetic Field: The Biot–Savart Law, The Magnetic Force Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter

Faraday's Law: Faraday's Law of Induction, Motional emf, Lenz's Law, Induced emf and Electric Fields Generators and Motors, Eddy Currents (Text 2 Page No 868-969)

10 Hrs

15 Hrs

Text Book:

- 1. David A Bell, "Electronics Devices and Circuits", Fifth Edition, Oxford University Press.
- 2. Serway and Jewett, "Physics for Scientists and Engineers-with Modern Physics", 9th Edition, CENGAGE learning. 2014

References:

- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH
- 2. R P Feynman, Robert B Leighton, Matthew Sands, The Feynman Lectures on Physics Vol-II, Norosa Publishing House (1998).
- 3. Ben G Streetman, Solid State Electronic Devices, Prentice Hall, 1995

Program: Bachelor of Engineering			Semester - I			
Cou	rse Title: Engineering	Mechanics	Course Code: 15ECVF10)1		
L-T-F	P: 4-0-0	Credits:4	Contact Hrs: 4hrs/week	ek		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100			
Teac	Teaching Hrs: 50 Tutorial/Practical: Exam Duration: 3 hour		rs			
Unit I						
	Overview of Civil En	gineering				
		gineering: Specialization, scope ar	nd role.			
1	Impact of Civil Engir	neering on: National economy, en	vironment and social &	04 hrs		
-	cultural fabric.			04 1113		
	Challenges and Opp	ortunities for Civil Engineers: Civ	vil Engineering Marvels,			
	Future challenges, H	gher education and Research.				
	Coplanar concurrent	force system				
	Introduction to Er	gineering Mechanics: Basic id	ealizations – Particle,			
	Continuum, Body, R	igid body, Deformable body, Def	inition of force and its			
	elements; Laws of	Mechanics – Parallelogram law	of forces, Principle of			
	transmissibility, Law of Superposition, Newton's laws of motion. Classification					
	of force systems					
2	Resultant of coplanar concurrent force system: Definitions – Resultant,					
	composition & Resolution of a force, Equilibrium, Equilibrant, Formulae for					
	resultant of forces and resolution of a force. Numerical problems on resultant					
	of forces.					
	Equilibrium of coplanar concurrent force system: Conditions of equilibrium,					
	•	ree body diagram, Lamis' theoren	n. Numerical problems			
	on equilibrium of for					
	Coplanar non-concu	<u>-</u>				
	Resultant of a force system: Moment, moment of a force, couple, moment of					
3	a couple, Characteristics of couple, Equivalent force-couple system, Numerical					
	=	ent of forces and couples, on e	•			
	system. Varignons principle of moments, Resultant of coplanar- non-					
	concurrent force systems and numerical problems.					
		Unit II				
	Equilibrium of a force	e system (Chapter 3 contd): Co	nditions of equilibrium,			
А	types of support and loading for a statically determinate beam, Reactions at			P L		
4	support connections, Numerical problems on equilibrium of force systems and			5 hrs		
	support reactions for	a statically determinate beam.				

5	Static Friction: Introduction, types of friction, definition, limiting friction, coefficient of friction, laws of Coulomb friction, angle of friction and angle of repose, cone of friction. Wedge and belt friction theory. Derivation of belt friction formula. Numerical problems on, impending motion on horizontal and inclined planes (including connected bodies); wedge friction; Ladder friction and Belt friction.	8 hrs
6	Simple Stress and Strain: Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress – Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics.	6 hrs
	Unit – III	
7	Centroid of Plane Figures: Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.	5 hrs
8	Chapter 8: Second moment of area (Plane figures): Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.	5 hrs

Text Book:

- 1. Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Company, New York, 1988.
- 2. Bhavikatti, S.S., and Rajasshekarappa K.G., Engineering Mechanics, 3Ed., New Age International Pub. Pvt. Ltd., New Delhi, 2008.
- 3. Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 4. Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publications, New Delhi, 2006

References:

- 1. Jagadeesh, T.R. and Jayaram, *Elements of Civil Engineering*, Sapna Book House, Bangalore, 2006.
- 2. Ramamrutham, S., *Engineering Mechanics*, Dhanpat Rai Publishing Co., New Delhi, 1998
- 3. Singer, F.L., *Engineering Mechanics*, 3rd edition Harper Collins, 1994.
- 4. Timoshenko, S.P. and Young, D.H., *Engineering Mechanics*, 4th edition, McGraw Hill Publishing Company, New Delhi, 1956.
- 5. Irving H Shames, *Engineering Mechanics*, 3rd edition, Prentice-Hall of India Pvt. Ltd, New Delhi- 110 001, 1995.

Prog	gram: Bachelor of Engin	eering	Semester - I		
Cou	Course Title: C Programming for Problem Solving Course Code: 18E		Course Code: 18EC	SP101	
L-T-	P: 0-0-3	Credits: 3	Contact hrs: 6 Hrs	/week	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100		
Tea	ching :	Tutorial/Practical: 84hrs	Exam Duration: 3	3 Hrs	
1	Introduction to Proble	em Solving: Introduction to algori	thms / flowcharts	3 hrs	
	and its notations, top of	lown design, elementary problems		3 1113	
2	Basics of C programmi	ng language: Characteristics and u	ses of C, Structure		
	of C program, C To	kens: Keywords, Identifiers, Var	iables, Constants,	15 hrs	
	Operators, Data-types,	Input and Output statements.			
3		atements: Conditional branchin	~		
		ment, else if ladder, switch statem	ent, unconditional		
	branching statements:	,		12 hrs	
	Introduction to Debugg	. •			
	Introduction to Test Driven Programming.				
4	Iterative Statements: while, do while, for, nested statements			10 hrs	
5		on, Function declaration, definit	, ,		
		ameters to functions, introduction	to macros.	10 hrs	
	Introduction to Coding				
6	_	troduction, Declaration, Accessing	_		
		ations on one dimensional array, (Operations on two	15 hrs	
	dimensional arrays,				
	Introduction to Code Optimization and refactoring				
7		n, declaring pointer, pointer v	· ·		
	•	etic, passing arguments to function	ons using pointers,	08 hrs	
	, , ,	ssing an array to a function.			
8		: Introduction, passing structures t	to functions, Array	05 hrs	
	of structures, Unions				

Text Books

- 1. R.G. Dromey, How to Solve it by Computer, 1ed, PHI, 2008.
- 2. Yashvant Kanetkar, Let us C, 15th ed, BPS Publication, 2016.

Reference Books:

- 1. B W Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B S Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

Progra	Program: Bachelor of Engineering Semester - I				
Cours	Course Title: Basic Electrical Engineering Course Code: 18E			EEF101	
L-T-P:	3-0-0	Credits: 3	Contact: 3hrs/wee	eek	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing: 40 Hrs	Tutorial/Practical:	Exam Duration: 3	Hrs	
		Unit-I			
1	Electrical Engineering	al Engineering: Specialization, scope g on national economy, environr bility, challenges and opportunit engineering marvels, future challeng	ment, Sources of ies for electrical	02 hrs	
2	DC Circuits: Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Timedomain analysis of first-order RL and RC circuits.			05 hrs	
3	AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters			08 hrs	
		Unit-II			
4	classification of Ele separately excited, P motors, three phase	s: Electromagnetic principles, Sectric motors, DC motors-shunt, so MDC motors – Speed Control, Step induction motor, Characteristics or various applications.	eries, compound, per Motors, BLDC	9 hrs	
5	thyristor circuits, Li practice, The fully co devices in inverters, controlled converter,	(Text1, chapter 45): Introductory, mitations to thyristor operation, ntrolled AC/DC converter, AC/DC in Three-phase rectifier networks, The Inverter-fed induction motors, Softwersion switched-mode power	The thyristor in version, Switching three-phase fully	6 hrs	

	Unit-III				
	Electrical Wiring, Safety and protection(Ref :Text3-page 1 to 10): Types				
	of wires and cables for internal wiring, Types of switches and Circuits,				
6	Types of wiring, Safety precautions and rules in handling electrical	05 hrs			
6	appliances, Electric shock, first aid for electrical shocks, Importance of	US III'S			
	grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and				
	Relays, Lockout and Tagout, Electrical Codes and Standards.				
	Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery				
7	storage capacity, Coulomb efficiency, Numerical of high and low charging	05 hrs			
	rates, Battery sizing. Numericals.				

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th, Pearson Education, 2001
- 2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition
- 4. Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition

Reference Books:

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

Program:	Program: Bachelor of Engineering Semester - I				
Course Title: Design Thinking for Social Innovation				Course Code: 20EHSP101	
L-T-P: 0-1	-1	Credits:	2	Contact Hrs: 4hrs/week	
ESA Mark	s: 80	ISA Mar	ks: 20	Total Marks: 100	
Teaching	Hrs:	Tutorial	/Practical: 56 hrs	Exam Duration: 3 hrs	
Module	Topics		Assignments	Support activities / Tools	
KNOWLEDGE, TOOLS & DEVELOPMENT Course sensitization	 Introduction to Innovation: Awakening soo consciousness (www.yoursto) Social Innovation Leadership Engineering& innovation (EP (Connecting Stourse to Min Project, Capst Project, Capst Project, Camp Placements) Course Overvices Students' Self Introduction Activity 	cial ory.com on and Social ICS) i one us ew	 Reading assignments Read the handout of "The Process of Social Innovation" is Geoff Mulgan Design thinking for Social Innovation Written Assignments Writing about Akshaya Patra in class. (Background information about Akshaya patra and the Social Cuase it is addressing) Brainstorming Session on Social Innovators in Class 	to Innovation Discussion on the behavioural blocks. Introducing oneself with three Adjectives-Appreciating diversity and discovering self Group Formation Activity (Forming square) (Making four equilateral triangles out of popsicle sticks to enhance group cohesiveness amongst the group mates)	
Create Mindsets	Seven Mindsets: 1. Empathy (Example of The B the Puppies) 2. Optimism	oy and	 Reading assignments Handout on "Creat Mindsets" 	 (How to train the Dragon? Common Video for all the mindsets) Watching in Class TED Talk on "How 	

	(Person Paralyzed waist down / Glass Halh full Half Empty) 3. Iteration (Thomas Alva Edison) 4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched)			to build youir Creative Confidence by David Kelley – IDEO Founder)
Process of Social Innovation	Engage Community study and Issue Identification	 Reading assignments Handout on Community Study and Issue Identification Case Study on "EGramSeva" Case Study on "Janani Agri Serve" Class Presentations Initial observations being made by the group (Literature Survey of Places of Hubli- Dharwad) www.readwhere.co m 	•	Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective

	Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge	templates with the help of sample case study
	PEER REVIEW	
2. Inspiration	Reading assignments	Familiarization of
Plan for the Reso		the respective
Development of		templates with
Interview guide	Inspiration	the help of
Capture your	Class Presentations	sample case
Learnings	Entirety of the Social	study
0	Issue	·
	Identification of the	
	Stake Holders	
	(Examples on	
	Fluoroscent Curtain	
	and Students'	
	Punctuality for Class)	
	 Interview Questions 	
	(Role Play on	
	Interview with	
	Stakeholders)	
	Category wise	
	Learnings capture	
	Use template 2: Plan	
	your Research	
	Template 3.	
	Development of	
	Interview Guide	
	Template 4. Capture	
	your Learning	
2 Ideation	Donding perigraments	a Familiants (1)
3. Ideation	Reading assignments	Familiarization of
3.1 Synthesis	 Handout on Overview of Ideation- 	the respective templates with
Search for mean	Synthesis	templates with
	Synthesis	

Create "How might we" question	Class Presentations	the help of sample case study
 3.0 Ideation 3.2 Prototyping Generate Ideas Select Promising Ideas Determine what to prototype Make your prototype Test and get feedback 	Reading assignments Handout on Overview of Ideation- Prototyping Class Presentations Story board- demonstrating the possible solutions Use template 7: Select your best ideas Template 8: Determine what to prototype	 Brain storming Familiarization of the respective templates with the help of sample case study Activity on Risk management Activity on Resource management Structure building games
 4.0 Implementation Create an action plan Community Partners (if any) Budgeting & Fundraising Peer to Peer Crowd Funding Giving Kiosks Donation Envelop Funding Marathons/ Walkathons 	PEER REVIEW Reading assignments Handout on Overview of Implementation Class Presentations Pilot implementation plan with required resources and Budget indicating stake holders & their engagement	Familiarization of the respective templates with the help of sample case study

7. Conducting Yoga Classes (www.causevox.com / www.blog.fundly.com) • Duration		
Ethical concernsLaunch your solutionFeedback (Impact)		
5.0 Reflect Reflection of the overall learning by the students	Reading assignments • Handout on Overview of students Reflection Use template 9: Reflection on the Process Class Presentations Final Presentation- After Implementation	Familiarization of the respective templates with the help of sample case study

Program: Bachelor of Engineering		Semester - I			
Course Title: Applied Physics Lab		Course Code: 21EPHP101			
L-T-P: 0-0-1 Credits : 1		Contact Hrs.: 02 Hrs/Week			
ISA Marks: 80 ESA Ma		ESA Marks: 20	Total Marks: 100		
Teaching Hrs:		Tutorial/Practical: 28hrs	Exam Duration: 3 Hrs.		
	Experiments				
1.	Four probe method				
2.	V-I characteristics of p-n junction diode				
3.	Zener diode characteristics				
4.	Hysteresis loss				
5.	Transistor characteristics				
6.	Measurement of dielectric constant				
7.	Resonance frequency of LCR circuits				
8.	Study of frequency response of passive components				
9.	Calibration of thermocouple				
10.	Calibration of electrical meters				

II Semester

Pro	gram: Bachelor of Engine	ering	Semester - II	
Cou	ırse Title: Multivariable c	alculus	Course Code: 18EMAB10	2
L-T-	P: 4-1-0	Credits: 05	Contact Hours: 6hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tea	ching Hours: 50	Tutorial/Practical: 28hrs	Exam Duration: 3hrs	
		Unit-l		
	Partial differentiation:	Function of several variables	, Partial derivatives, Level	
1	curves, Chain rule, Errors and Approximations. Extreme value problems.			12 hrs
	Lagrange's multipliers.			
	Double integrals: Do	uble integrals- Rectangular	and polar coordinates,	
2	Change the order of in	tegration. Change of variab	les, Jacobian. Application	00 h
2	of double integrals			08 hrs
	Matlab: optimization p	roblems, application of doub	ole integrals	
		Unit-II		
	Triple integrals: Triple integrals, Cartesian, change to Cylindrical and Spherical			
3	coordinates Application of Triple integrals			07 hrs
	Calculus of Vector Fields	: Vector fields, Gradient ar	d directional derivatives.	
	Line and Surface integra	als. Independence of path	and potential functions.	
4			13 hrs	
	vector field. Stokes theorem.			
	Matlab: application of Triple integrals, Vector calculus problems			
		Unit III		
	Differential equations of	f higher orders: (a) Linear	differential equations of	
	second and higher order	with constant coefficients TI	ne method of Variation of	
	parameters. Initial and b	oundary value problems.		(5+5)
5	` ' ' ' '	ond order differential equa		hrs
	electrical circuits, Simpl	e Harmonic motion. Series	s solution of differential	1113
	•	ies solution of Differential e	quations.	
	Matlab: application of di	fferential equations		
	t Books :			
1	. Early Transcendental C	alculus- James Stewart, Tho	mson Books, 7ed 2010	
Ref	erence Books:			
	1. Hughues- Hallett Glea	son, Calculus Single and Mu	ltivariable, 4ed, Wiley Indi	а,

2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

BACK

2009.

Pro	gram: Bachelor of Engi	neering	Semester - II	
Coi	urse Title: Engineering	Chemistry	Course Code: 22ECHB102	2
L-T	-P: 3-0-0	Credits: 03	Contact Hours: 3hrs/week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tea	ching Hours: 40	Tutorial/Practical:	Exam Duration: 3hrs	
		Unit-I		
	Chemical Bonding: Introduction, Ionic bond, factors influencing the formation			
		tion energy. Electron affinity	-	
	properties of Ionic compounds. Covalent bond: Valence Bond theory &			
		neory – formation of hydr		
1	influencing the formation of covalent bond, polar and non-polar covalent			04 hrs
	bond, dipole moment, problems on calculation of percentage of lonic			
	character and properties of covalent compounds, Co-ordinate bond:			
	formation of hydroniu	m ion and ammonium ion.		
	Electrochemical Ener	gy Systems: Electrode pot	ential, Nernst equation,	
	formation of a cell; Re	eference electrodes – Calomel	electrode, Determination	
2	of electrode potential,	, numerical problems on E, E _c	ell & E ⁰ cell.	06 hrs
	Batteries: Classificati	ion, Characteristics, Lead - a	cid, Lithium ion	
	battery. Fuel cells - Me	ethonol-O ₂ fuel cell.		
	Polymers: Introduction	on, polymerization; mechanism	of polymerization taking	
	ethylene as an example. Determination of molecular weight of a polymer –			
3	numerical problems.	Commercial polymers - Plexi g	lass, PS, polyurethane.	06 hrs
	Polymer composites: (Carbon fiber and Epoxy resin –	synthesis, properties and	00 1113
	applications. Introduc	tion to conducting polymers, r	nechanism of conduction	
	in poly acetylene and	applications.		
		Unit-II		
		ntroduction, technological im	, ,	
	Principles of electroplating. Factors affecting nature of electrodeposit,		_	
4	throwing power, Numerical problems on throwing power, Electroplating			04hrs
	process of gold by acid cyanide bath. Electro less plating, advantages of electro			
	less plating over electroplating. Electro less plating of Cu and its application in			
	the manufacture of PC			
	Wafer Technology: Introduction, physical and chemical properties of silicon.			
_	Purification of silicon; chemical vapor deposition (CVD) process, zone refining			
5	orocess. Crystal growth; preparation of single crystal silicon by Czhochralski 09 hi crystal pulling technique – numerical problems. Crystal slicing and wafer		09 hrs	
		que – numerical problems.	Crystal slicing and wafer	
	preparation.			

	Fabrication process: thermal oxidation, diffusion, ion implantation – numerical	
	problems, epitaxial growth, masking and photolithography, wet etching, dry	
	etching.	
	Material Chemistry: Liquid Crystals – Types of liquid crystals, applications of	
6	Liquid Crystal in Display system.	
0	Fluorescence and Phosphorescence – Jablonski diagram, Thermoelectric and	
	Piezoelectric materials – meaning, properties and applications	
Unit-III		
	Instrumental methods of measurement: Advantages over conventional	
	methods. Electro analytical methods: Potentiometer - principle, methodology	
7	and applications. Optoanalytical methods: Colorimeter - Principle,	04 hrs
'	methodology and applications.	
	Spectral methods of analysis: UV – Spectrophotometer - Instrumentation	
	and applications	
	Environmental Chemistry: Water: Sources and ill effects of water pollutants –	
	fluoride and nitrate; determination of total hardness of water by EDTA method	
8	– numerical problems. ,	
ō	Sewage: Determination of Biological Oxygen Demand by Winkler's method –	04 hrs
	numerical problems and determination of Chemical Oxygen Demand –	
	numerical problems.	

Text Books:

- 1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009, New Delhi.
- 2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat Rai Publications, 2006, New Delhi

Reference Books:

- 1. Text book of Inorganic Chemistry, P.L.Soni, Sultan Chand, 1999, New Delhi.
- 2. Hand book of batteries, David Linden, Thomas B Reddy, 3rd edition Mc Graw Hill publications, 2001, New York.
- 3. Polymer Science, 6th Edition, Gowariker V.R., Viswanathan N.V., Sreedhar J., New Age International (P) Ltd, 2007, New Delhi.
- 4. Solid State Devices& Technology, 4thEdition, V.Suresh Babu, sanguine Technical Publishers, 2005, Bangalore.
- 5. Material Science & Engineering: An Introduction, 9th Edition, Calister William D, John Wiley and sons, 2007, New York.
- 6. Instrumental methods of Chemical nalysis, 5th Edition, Gurudeep R Chatwal, Shan K Anand, Himalaya Publishing House Pvt. Ltd, 2010, Mumbai.
- 7. VLSI Technology, 2nd Edition, S.M.Sze, McGraw Hill Series in electrical and computer engineering, 1998, New York.

Prog	Program: Bachelor of Engineering Semester - II				
Cou	Course Title: Problem Solving with Data Structures Course Code: 18EC			SP102	
L-T-I	P: 0-0-3	Credits: 3	Contact: 6 hrs/wee	ek	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100		
Teac	ching hrs :	Tutorial/Practical: 84hrs	Exam Duration: 3 H	Irs	
	Pointers, Structures a	nd Files: Recap of basics: Pointe	rs ,Structures; Self-		
1	referential structures	, dynamic memory managem	ent Files – File	12 hrs	
	manipulation programs	S			
	Stacks and Recursion: Stack: Definition, Operations, Stack ADT				
2	Implementation of stack operations. Applications of stack.				
	Recursion- Need for Re	ecursion and problems on Recursic	n.		
	Queues: Definitions of Linear, Circular queues, Queue ADT Linear and				
3	circular queue operation	ons Definition and working of Pric	ority queue, Double	16 hrs	
	ended queue; Applicat	ions of queues.			
	Lists: Concept of lists	and dynamic memory manageme	ent lists, definitions		
4	and representations: si	ngly, doubly, circular lists. Dynamic	Implementation of	18 hrs	
	lists and its operations, Applications of linked lists				
	Binary trees: Binary Tree: Definition, Terminology and representation, Tree				
5	Traversals both recu	rsive and iterative. Binary Sea	rch Tree and its	16 hrs	
	applications.				

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- 3. Data Structures Through C -- Yashavant P Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

Prog	Program: Bachelor of Engineering Semester - II			
Cour	Course Title: Engineering Exploration Course Code: 22ECR			RP101
L-T-P	-T-P: 0-0-3 Credits: 3 Contact Hrs.: 6hrs/		week	
ISA N	Vlarks: 80	ESA Marks: 20	Total Marks: 100	
Teac	Teaching Hrs: Tutorial/Practical: 84hrs ESA Exam Duration			3 hrs
No	Content			Sessions
1	Introduction to Engineering and Engineering Study			1
2	Role of Analysis in Engineering, Analysis Methodology			2
3	Data Analysis Graphing			2
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering Design			5
5	Project Management			1
6	Sustainability in Engi	neering		2
7	Ethics			1
8	Modeling, Simulation and Data Acquisition using Software Tool			1
9	Platform based development : Arduino			3
9	Course Project			3
Rofo	rence Books:			

Reference Books:

- 1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter		Weightage in
No	Name	percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10
5	Basics of Engineering Design	
	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using Software	
9	Tool	-
10	Platform Based Development: Arduino	-
10	Course Project	40

Progra	am: Bachelor of Engin	eering	Semester - II		
Cours	Course Title: Basic Electronics Course Code: 18EECF		Course Code: 18EECF1	18EECF101	
L-T-P:	T-P: 4-0-0 Credits: 4 Contact Hours: 4 Hrs/we		week		
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 50	Tutorial/Practical:	Exam Duration: 3 Hrs.		
	Unit-I				
	Trends in Electronic	Industries: Introduction, R	oadmap of electronic		
	sector, scope and opportunities in various segments of electronics (i.e.,				
1	Consumer, Telecom,	IT, Defense, Industrial, Medi	ical and Automobiles),	03 hrs	
	Government and private sectors, Growth profile of Electronic industries,				
	Standards and PoliIS	As, Electronic System Compo	nents		
	Basic Components,	Devices and Applications	: Diode: PN junction		
	characteristics; mode	eling as a circuit element, ide	al and practical diode.		
2	AC to DC converter:	Half wave and full wave re	ctifier (centre tap and	10 hrs	
	bridge), capacitor filter and its analysis, numerical examples. Zener diode				
	and its applications (Voltage reference and voltage regulator). Realization				
	of simple logic gates like AND and OR gates.				
	Transistor: BJT, transistor voltages and currents, Signal amplifier (Fixed				
	bias, Collector base bias, Voltage divider bias, CE configuration). DC load				
3	line. Voltage, current and power gains. Transistor as a switch: NOT Gate,				
	Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage				
and Two Stage RC-coupled Amplifier).					
	1 .	Unit-II			
		er systems: Decimal, Binary, (
	•	, , ,	rations-Addition and		
	subtraction in binary number systems. Logic gates: Realization of simple				
_	logic functions using basic gates (AND, OR, NOT), Realization using			•	
4	universal gates (NAND, NOR). Boolean algebra: Theorems and postulates,			14 hrs	
	DeMorgan's Theorems , simplification of logical expressions, Karnaugh				
	• •	augh Maps to Minimize Bo	·		
	Variables, 3 Variables and 4 Variables), Design of Half Adder and Full				
	Adder, Parallel Adder		un ata viation (ideal and		
	-	onal Amplifier: OPAMP cha	•		
5	practical), Linear and non-linear applications: Inverting amplifier, Non				
	inverting amplifier, Voltage follower, Integration, Differentiation, Adder,				
	Subtractor, ZCD and Comparator. Unit-III				
	Communication Syst	:ems: Basic block diagram of c	ommunication system		
6		. Amplitude modulation: Tim		07 hrs	
	types of infodulation	. Amplitude modulation. Illi	c Domain description,		

	Frequency-Domain description. Generation of AM wave: square law	
	modulator. Detection of AM waves: envelope detector. Double side band	
	suppressed carrier modulation (DSBSC), Generation of DSBSC wave:	
	balanced modulator, Super heterodyne principle.	
	Linear Power Supply, UPS & CRO: Working principle of linear power	
7	supply, UPS and CRO. Measurement of amplitude, frequency and phase	03 hrs
	of a given signal.	

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References:

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design , 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. BoylesteadNashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

Program: I	Bachelor of Engi	neering		Semester - II	
Course Tit	Course Title: Basic Mechanical Engineering Course co		Course code: 22EME	Course code: 22EMEF101	
L-T-P: 2-1-	L-T-P: 2-1-0 Credits: 3			Contact Hrs: 4hrs/week	
ISA Marks	: 50	ESA Marks: 50 Total Marks: 100			
Teaching F	łrs: 50	Tutorial/Practical: 28	3hrs	Exam Duration: 2 hrs	
Chapter	Co	ontents	Hours	Tutorial	Sessions
		UNIT I			
1	Introduction	to Mechanical	2	Visit to Workshop	1
	Engineering:			and Machine Shop,	
	Definition	of engineering,		Tools, Safety	
	Mechanical En	gineering, Branches		Precautions	
	of Mechanical	Engineering, Who		Video presentations	
	are Mecha	nical Engineers?,			
	Mechanical E	ngineers' top ten			
	achievements.				
2		Engineering: Basics	8	Demonstration on	5
	of Manufacturi	_		working of Lathe,	
		acturing?, The main		milling, drilling,	
	manufacturing	ŕ		grinding machines	
	importance	of the main		Demonstration on	
		sectors to the Indian		Welding (Electric	
	-	s of production		Arc Welding, Gas	
	Classification	of manufacturing		Welding, Soldering)	
	Processes.			Demonstration and	
		Manufacturing: CNC		Exercises on Sheet	
	· ·	Mechatronics and		metal work.	
	applications			Visit to Learning	
		UNIT II		Factory	
3	Design Eng	ineering: Power	6	Design Problems	5
3	Transmission E	•	U	like a moving	3
	Overview	icinciits		experience,	
	Design Applicat	ion:		aluminium can	
		Types, Length of Belt.		crusher	
		tio, Initial Tension.		Video presentations	
	Ratio of	Tensions. Power		,	
	Transmitted,				
	Problems.				
1	i i obiciiis.				

	Gears. Spur Gear, Rack and			
	Pinion, Worm Gear, Bevel Gear,			
	Helical Gears. Speed, Torque, and			
	Power in Gear pair. Simple and			
	Compound Gear trains.			
	Numerical Problems.			
	Ball and Roller Bearings, Types,			
	Applications.			
4	Thermal Engineering 1: Prime	4	Case study on	1
	Movers.		power requirement	
	Internal Combustion Engines:		of a bike, car or any	
	Classification, IC engine parts, 2		machine	
	stroke SI and CI engine, 4 Stroke SI		Video presentations	
	and CI Engine, PV diagrams of Otto			
	and Diesel cycles, Comparison of 2			
	stroke and 4 stroke engine,			
	comparison of CI and SI engine,			
	Problems on Engine Performance,			
	Future trends in IC engines.			
	UNIT III			
5	Thermal Engineering 2: Thermal	5	Case study on	1
	Systems' Applications		selection of various	
	Refrigeration system, Air		thermal systems	
	conditioning system, Pumps,		Video presentations	
	Blowers and Compressors,			
	Turbines, and their working			
	principle and specifications.			

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,—Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology Vol I & II, 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

Progr	am: Bachelor of Engineerin	g		
Course Title: Computational Medicine Course Code: 24EC			E340	
L-T-P:	T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/we		eek	
ISA M	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40	Practical Hrs:	Exam Duration: 3hrs	5
		Unit –I		
Introduction to Cell Organization: Cell Theory, Prokaryotic and Eukaryotic Cells, Organelles, Cell Membrane, Cell Cycle, Tissue, Organs, Organ Systems, Homeostasis.				6 hrs
2	Systems Biology: Systems Biology, Modelling Biological Systems, Network Biology, Omics Technologies, Systems Biology Applications.			6 hrs
3	Biological Networks: Protein-Protein Interaction Networks (PPINs), Gene Regulatory Networks (GRNs), Metabolic Networks, Metabolic Networks.			6 hrs
Unit –II				
4 Molecular Interactions: Protein-Protein Interactions, Protein-DNA Interactions, Protein-Ligand Interactions, Molecular Dynamics Simulations.			8 hrs	
5	Introduction to modelling health and disease: Principles of Computational			8 hrs
		Unit –III		
6 Introduction to Computational Anatomy: Case Studies: Computational Anatomy of the Brain and Computational Anatomy of the Heart.			5 hrs	
Text Books: NA				
Refer	ence:			
1. Lecture Notes and Handouts				
2. Some reference papers / Slides/ Videos				

Computational Medicine Laboratory Plan

SI. No	Exercise	No of Slots(2 hrs)	
1	• Lab sessions on cell observation (microscopy) and tissue analysis.	1	
1	 Group projects on modelling biological systems. 	1	
2	Case studies on diseases related to cellular dysfunction.	1	
	 Bioinformatics exercises using publicly available datasets. 	1	
	Computational exercises in network analysis using available		
3	software tools.	1	
	 Case studies of network-based drug discovery and development. 		
4	Data mining and analysis of biological network datasets.	1	
4	 Integration of network analysis with experimental validation. 	1	
5	Hands-on experience with computational modelling software.	1	

6	Development of simplified models to understand core concepts.	1
7	Analysis of real-world data to parameterize and validate models.	1
8	Collaboration with experimental biologists and clinicians.	1
9	Hands-on experience with medical image processing software.	1
10	Development of image analysis pipelines for specific clinical problems.	1
11	Application of machine learning techniques for image analysis.	1
12	Collaboration with clinicians for data interpretation and clinical	1
	validation	

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage in Marks
In Semester Assessment (ISA-1)	40	15
In Semester Assessment (ISA-2)	40	15
Laboratory Assessment	20	20
	50	

ESA Scheme

Assessment	Conducted for marks	Weightage
ESA (Theory)	100	50
	Total	50

Dungung Bankalay of Freimanian					
Program: Bachelor of Engineering Semester - II			Semester - II		
Cours	e Title: Professional Co	mmunication	Course Code: 15EHSH10	1	
L-T-P:	1-1-0	Credits: 2	Contact Hrs.: 3hrs/week		
ESA N	Marks: 50	ISA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs		
		Content		Hrs	
1	1 Basics- English Communication: Course Introduction, Explanation of template mix-ups with correct usages & necessity of grammar in error detection, Usage of tenses			9 hrs	
2	Vocabulary and grammar: Vocabulary, Word Formation and Active and Passive Voice			6 hrs	
3	Bouncing Practice: Definition and types of bouncing and its practice with examples, reading skills, free style speech. Individual presentation.			6 hrs	
4	4 Rephrasing and Structures: Comprehension and Rephrasing, PNQ Paradigm and Structural practice			8 hrs	
5	Dialogues: Introduction of dialogues, Situational Role plays,			3 hrs	
6	Business Communicat paragraphs on any give	ion: Covering letter, forma en general topic.	l letters, Construction of	9 hrs	

References:

- 1. Collins Cobuild Advanced Learner's English Dictionary
- 2. Raymond Murphy Intermediate English Grammar, Cambridge University Press
- 3. Martin Hewings- Advanced English Grammar, Cambridge University Press.

Semester - III

Program: Bachelor of Engineering		Semester – III		
Cours	Course Title: Linear Algebra		Course Code: 24EMAB208	
L-T-P:	: 3-0-1	Credits: 4	Contact Hrs: 5hrs/week	
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs.	
		Unit – I		
1	Matrices and Gaussian Elimination: Introduction, The Geometry of Linear Equations, An Example of Gaussian Elimination, Matrix Notation and Matrix Multiplication, Triangular Factors and Row Exchanges, Inverses and Transposes, Special Matrices and Applications.			08 hrs
2	Vector Spaces and Subspace: Solving Ax= 0, and Ax= b, Linear Independence, Basis, and Dimension, The Four Fundamental Subspaces, Graphs and Networks, Linear Transformations.			08hrs
		Unit – II		
3	Orthogonality: Orthogonal Vectors and Subspaces, Cosines and Projections onto Lines, Projections, and Least Squares.			08hrs
4	Eigenvalues and Eigenvectors: Introduction to Determinants, Properties of the Determinant, Formulas for the Determinant, Applications of Determinants. Introduction, Diagonalization of a Matrix, Difference Equations and Powers Ak, Differential Equations and e ^{At} , Similarity Transformations.			08hrs
		Unit – III		
5		ces: Positive Definite Matric Positive Definiteness, Singu		08hrs

Text Books:

- 1. Linear Algebra and its Applications, Gilbert Strang , 4 Edition, Cengage India Private Limited 2005.
- 2. Linear Algebra and Its Applications, David C. Lay, 5th Edition Pearson -2023.

Reference Books:

- 1. Boyd, Stephen, and Lieven Vandenberghe. "Introduction to applied linear algebra: vectors, matrices, and least squares", Cambridge university press, 2018.
- Linear algebra for computer science "Essential Mathematics for Computer Scientists"
 M. THULASIDAS, Singapore Management University, 2021.

Progra	am: Bachelor of Engine	eering	Semester – III	
Course	e Title: Discrete Mathematical Structures Course Code: 24ECSC202		2	
L-T-P:	3-1-0	Credits: 4	Contact Hrs: 5 hrs/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3hrs	
		Unit –I		
	Logic and Proofs: Pro	opositional Logic, Application	s of Propositional Logic,	
1	Propositional Equiv	valences, Predicates and	Quantifiers: Nested	8 hrs
	Quantifiers, Rules of	Inference, Introduction to Pro	oofs.	
	Counting: The Basics	of Counting, The Pigeonhole	Principle, Permutations	
2	<u> </u>	Generalized Permutation	s and Combinations,	8 hrs
	Generating Permutat	tions and Combinations		
	T	Unit –II		
		s: Applications of Recurrence		
3	Recurrence relations, Solving Linear and nonlinear Recurrence Relations,			8 hrs
	Generating Functions: recurrence relation, Inclusion–Exclusion,			
	Applications of Inclus			
	•	risibility and Modular Arithme	·	
		Primes, Trial Division, The	•	
4	Testing for primality, the Euclidean Algorithm and gcds as Linear		8 hrs	
		lving Congruences: Linear	_	
		; Applications of Congruen	ces: Hashing Functions,	
	Pseudorandom Numbers and Check Digits.			
	Crowner Dinem: Ores	Unit –III	d Cuarra Abalian array	
Groups: Binary Operations, Semi groups, Monoid, Group, Abelia cyclic groups, rings and Products & Quotients of Semi Groups.			4 hrs	
			·	
6	and Finite fields of th	Finite fields of the form GF(p)	j, Polynomiai Arithmetic	4 hrs
	and i fille fields of th	ie ioiiii di (zii)		

- 1. Kenneth H. Rosen, Kamala Krithivasan, Discrete Mathematics and its Applications, 8th Edition, Tata Mc-GrawHill Publication, July 6, 2021.
- 2. Kolman, Busby and Ross, Discrete Mathematical Structures, 6Ed., Pearson 2018

Reference Books:

- 1. Grimaldi R.P. and Ramana B.V, Discrete and Combinatorial Mathematics- An Applied
- 2. Introduction, 5 Ed., Pearson Education, 2019 Dr. D.S. Chandrashekar, Discrete Mathematical Structures, 6th Edition. Prism Publication January 2019,
- 3. William Stallings, Cryptography and Network Security Principles And Practices, 7th Edition, Pearson, 2017

Scheme for End Semester Assessment (ESA)

Assessment	Weightage in Marks
ISA 1	15
ISA 2	15
Tutorial:	20
Assignment and Activity	
Total	50

Tutorial Content:

Sl. No	Topic	Number of slots
1.	Logic and Proofs	3
2.	Functions and Relations	2
3.	Counting	2
4.	Recurrence Relations	2
5.	Groups	2
6.	Number theory	1
7.	Programming: With C	2

Progra	am: Bachelor of Engineering		Semester – III		
Cours	e Title: Computer Organization	and Architecture	Course Code: 24E0	CSC201	
L-T-P:	-T-P:3-0-1 Credits: 4 Contact Hrs: 5hrs/		Contact Hrs: 5hrs/v	Hrs: 5hrs/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 h	nrs	
		Unit –I			
	Computer Fundamentals:	Basic Concepts and Cor	nputer Evolution:		
	Organization and Architectur	re, Structure and Function,	A Brief History of		
	Computers, The Evolution of t	he Intel x86 Architecture, Em	bedded Systems		
	Performance Issues: Two Laws	that Provide Insight: Ahmda	hl's Law and Little's		
1	Law, Basic Measures of Co	mputer Performance, Calc	ulating the Mean,	04 hrs	
	Benchmarks and Spec.				
	A Top-Level View of Compu	iter Function and Intercon	nection: Computer		
	Components, Computer F	Function, Interconnection	Structures, Bus		
	Interconnection, Point-to-Poir	nt Interconnect			
	Computer System: Memory:	Computer Memory System	n Overview, Cache		
	Memory Principles, Elements of Cache Design, Semiconductor Main Memory,				
2	DDR DRAM			06 hrs	
	Input/Output: External Devices, I/O Modules, Programmed I/O, Interrupt-				
	Driven I/O, Direct Memory Access				
	The Central Processing Unit:				
3	Machine Instruction Character			06 hrs	
	Instruction Sets: Addressing		ddressing Modes,		
	Instruction Formats, Assembly				
	Th. B	Unit –II			
	The Processor: Processor St				
4	Register Organization, Instruction Cycle, Instruction Pipelining			08 hrs	
	Instruction-Level Parallelism	·	Overview, Design		
	Issues, Intel Core Microarchit Parallel Organization: Paralle		ssor Organizations		
	Symmetric Multiprocessors,	• .			
5	Multithreading and Chip Mult		ie iviesi Piulucui,	08 hrs	
	Multicore Computers: Hardw	•	tware Performance	00 1113	
	•				
Issues, Multicore Organization, Heterogeneous Multicore Organization. Unit –III					
	General-Purpose Graphic Pro		PU versus CPU. GPU		
6	Architecture Overview		1 1 2 2 3 3 5 3 7 3 1 0	04 hrs	

7	Control Unit Operation:	Micro-Operations , Control of the Processor, Case		
	,	studies and Projects		04 hrs

1. William Stallings, Computer Organization and Architecture Designing for Performance, 10th Ed, Pearson Education, 2016.

Reference Books:

- 1. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5th Edition, Elsevier publication, 2017.
- 2. Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata McGraw Hill 2008

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5	4,5	Solve Any 2
111	Q.No6	6	Solve Any 1
III	Q.No7	7	Solve Ally 1

Laboratory Plan

	Edsoratory Fian	
Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/b atch
1.	Logisim Tool Demo	01
2.	Combinational Circuits (Half Adder, Full Adder, Decoder, Multiplexer)	01
3.	Building ALU	01
4.	Building ALU(contd)	01
5.	1-bit RAM Cell and building bigger RAM	01
6.	1-bit RAM Cell and building bigger RAM(contd)	02
7.	Design and simulation of main memory organization	01
8.	Design and simulation of main memory organization(contd)	01
9.	Design and simulation of register organization	02
10.	Design and simulation of datapath for processor design.	01
11.	Design and simulation of datapath for processor design (contd)	01
12.	Comparative study of contemporary processors	01

Prog	Program: Bachelor of Engineering Semester – III				
Cour	Course Title: Design and Analysis of Algorithms Course Code: 24E		Course Code: 24EC	CSC205	
L-T-P	P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/	/week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	0	
Teac	hing Hrs: 50	Tutorial/Practical:	Exam Duration: 3h	rs	
		Unit –I	1		
1	Foundations: Design Philoso	ophy and Intuitions, Space and	Time Complexities,	06 hrs	
1	Order of an Algorithm, Problem patterns: Recursion, Iteration, Backtrackinvg			00 1113	
2	Computing Principles and Tools: Pruning, Edge Relaxation, Sets, Traversals,			04 hrs	
	Prefix and Suffix, Union-Find, Hashing and Other Principles			04 1113	
	Structured Data Managemo	ent: Graphs and Trees, Tries, A	VL Trees, 2-3 Trees,		
3	Red-Black Trees, DFS, BFS,	Heap, Array Query, Spare Tab	le, Segment Trees,	15 hrs	
	Fenwick Trees, Skip Lists				
4	Sorting and Searching: Sorting and Searching Devices			06 hrs	
5	5 Graph Algorithms: Shortest Path and Spanning Trees			15 hrs	
6	Problem Assortments			04 hrs	
ь	Problem types, Undecidabil	ity, Limitations of Algorithm Po	ower	04 1115	

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Fourth Edition, The MIT Press, 2022.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education India; 3rd
- 2. Antti Laaksonen, Competitive Programmers Handbook, 2018
- 3. Bjarne Stroustrup, C++ Programming Language, Addison-Wesley Educational Publishers Inc; 4th edition.

Scheme for End Semester Assessment (ESA)

Clusters	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
1	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	6	·

Prog	ram: Bachelor of	Engineering	Semester – III	
Cou	rse Title: Databas	e Management System	Course Code:15ECSC208	
L-T-F	L-T-P: 4-0-0 Credits: 4 Contact Hrs: 4 hrs/week			
ISA I	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teac	thing Hrs: 50	Tutorial/Practical:	Exam Duration: 3 hrs	
		Unit –I		
	Introduction and	d ER Model: Introduction to DB	MS; Data Models, Schemas	
	and Instances; T	hree-Schema Architecture; Datal	pase Languages; Using High-	
	Level Conceptua	al Data Models for Database De	sign; An Example Database	
1	Application; Ent	tity Types, Entity Sets, Attribut	es and Keys, Relationship	06hrs
	Types, Relations	ship Sets. Roles and Structura	Constraints; Weak Entity	
	Types; Refining t	the ER Design; ER Diagrams, Nam	ing Conventions and Design	
	Issues.			
	Relational Data	Model and Relational Algebra:	Relational Model Concepts;	
	Relational Mode	el Constraints and Relational D	Database Schemas; Update	
2	Operations and dealing with constraint violations; Unary Relational			08hrs
_	Operations: SELECT and PROJECT; Binary Relational Operations: CARTESIAN			001113
	PRODUCT, JOIN: Additional Relational Operations; Relational Database			
	Design Using ER- to-Relational Mapping.			
3	SQL: SQL Data Definition and Data Types; SQL constraints; DDL and DML			08hrs
statements; JOIN operations; Complex SQL Queries, PL/SQL.				
	T	Unit –II		
	<u> </u>	gn: Informal Design Guideline	·	
4	Ī	endencies; Normal Forms Base	d on Primary Keys; Boyce-	09 hrs
	Codd Normal Fo			
		Transaction Processing: Int		
5		nsactions and System concept	•	09 hrs
		Characterizing Schedules Ba	sed on- Recoverability,	
	Serializibilty.			
Unit -III				
	1	Control Techniques: Introduc	, ,	05 '
6	Techniques for Concurrency Control, Dealing with Dead-lock and Starvation,			05 hrs
	Concurrency control based on Time stamp Ordering.			
_		ity: Introduction to DB Security	•	05 '
7		tory Access Control And Role-	Based Access Control, SQL	05 hrs
	Injections, SQL A	ATTACKS		

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011.
- 2. ShashankTiwari, Professional NOSQL, 1st Ed, Wrox, 2011.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Ed, McGraw Hill, 2007.
- 2. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
""	Q.No8	7	30IVE AITY I

Program: Bachelor of Engineering		Semester – III
Course Title: Database Applications Lab		Course Code: 15ECSP204
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80 ESA Marks:20		Total Marks: 100
Teaching Hrs: 36 Tutorial/Practical: 42hrs		Exam Duration: 3 hrs

List of experiments/jobs planned to meet the requirements of the course.

4- Demonstration	 Introduction to RDBMS/Case study/ basic SQL commands. 		
	 Set theory, logical operators and aggregate functions. 		
	 Group by , Having clause, Views and index 		
	Basics of PL/SQL.		
5-Exercises	 SQL queries on set theory, logical operators and join operations. 		
	 SQL queries queries on aggregate functions, group by and having clause. 		
	 SQL queries on Views and nested query operations. 		
	 PL/SQL queries using triggers and cursors. 		
	 PL/SQL queries using procedures and functions. 		
3-Structured	Database Design		
Enquiry			
1-Open Ended	Database design & implementation		
Experiment			

Text Book:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 7th edition, Pearson Education, 2012.
- 2. Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition , O'Reilly Media, 2014.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 2. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

Internal Semester Assessment	Assessment	Weightage in Marks
(80%)	Exercises	50
	Structured Enquiry	20
	Open Ended Experiment	10
End Semester Assessment (20%)	ESA	20
	Total	100

Program: Bachelor of Engineering		Semester – III
Course Title: Algorithms Lab		Course Code: 24ECSP205
L-T-P: 0-0-2 Credits: 2		Contact Hrs: 4 hrs/week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Teaching Hrs: Tutorial/Practical: 56hrs		Exam Duration: 03

SI.	Experiment	No. of Slots
No.		
1	Objected Oriented Programming Using C++ Basics	2
2	Introduction and Efficiency Analysis	1
3	Trees	1
4	Structured Data Management	1
5	Searching and Sorting	1
6	Graph Algorithms	2
7	Project Work	6

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Fourth Edition, The MIT Press, 2022.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education India; 3rd edition, 2007.
- 2. Antti Laaksonen, Competitive Programmers Handbook, 2018
- 3. Bjarne Stroustrup, C++ Programming Language, Addison-Wesley Educational Publishers Inc; 4th edition.

Evaluation Scheme

Sl. No.	Experiment	Marks
1	Exercise	20
2	Structured Inquiry	30
2	Project Work (ISA – 30, ESA - 20)	50
	Total	100

Prog	Program: Bachelor of Engineering Semester – III				
Course Title: Corporate Communications (AUDIT)		Course Code: 24EHSA201			
L-T-F	L-T-P: 0-0-0 Credits: 0 Contact Hrs: 1 hr/wed		Contact Hrs: 1 hr/wee	ek	
ISA I	Marks: 100	ESA Marks: NA	Total Marks: 100		
Teac	ching Hrs: 16	Tutorial/Practical:	Exam Duration: NA		
		Unit –I			
1	Communication Skills: To	ools of Communication, Liste	ening, Body Language,		
	Common Postures and	Gestures, Open and Closed	Body Language, Body		
	Language to be used in (Corporate Scenarios, Voice: P	itch, Pace, and Pause,		
	Verbal Language: Positive	e & Negative Vocabulary, Corp	oorate Conversations	4 hrs	
2	Presentation Skills: Zero Presentation, Individual Presentations, and				
	feedback, Making Presentations Interactive, Types of Questions, Taking off				
	and Signing off differently, Captivating your Audience, Corporate				
	Presentations 4		4 hrs		
3	Spoken English: Phonetic and Non-Phonetic Languages, Introduction to IPA,				
	Sounds in English, Syllables, Word Stress, Rhythm, Pausing, and Intonation 4			4 hrs	
4	Written English: Vocabulary Enhancement Strategies, Root Words in English,				
	Grammar Improvement	t Techniques, Dictionary	Usage, Similar and		
	Contradictory Words 4			4 hrs	
Text	Text Books:				
NA					
Refe	Reference Books:				
1. Diana Booher - Communicate With Confidence, Mc Graw Hill Publishers					
2. Norman Lewis – Word Power Made Easy, Goyal Publishers					
3.	3. Cambridge Advanced Learner's Dictionary, Cambridge University Press.				

Semester- IV

Progr	Program: Bachelor of Engineering Semester - IV			
Cours	Course Title: Probability and Statistics Course Code: 24EN		Course Code: 24EM	1AB209
L-T-P:	L-T-P: 3-1-0 Credits: 4 Contact Hrs: 5 hrs/		week	
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	ing Hrs:40 hrs	Tutorial/Practical: 28hrs	Exam Duration: 3 l	nrs
		Unit - I		
1	weighted mean, me	: Introduction: Data, Type o dian, mode, Quartiles, Varia Histogram, Box plots, Norma	nce, Coefficient of	10 hrs
2	_	ction: Definition, Interpretat e, multiplication rule, Baye		06 hrs
3	Lab: Introduction to Data handling and Data visualization (Histogram, Skewness, Boxplot, QQ-norm, Measures of central tendency and dispersion)		08 hrs	
		Unit - II		
4	Random variables and Probability Distribution: Random variables, simple Examples, Discrete and continuous random variables; Theoretical distributions: Binomial, Poisson, Normal Introduction to bivariate distribution, joint probability distribution, marginal distribution, and covariance.			07 hrs
5	Statistical Inference I: Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means (single and differences), using P-value approach		09 hrs	
	Lab: Probability distribution, Testing of Hypothesis for proportions, means(single and differences)		08 hrs	
Unit - III				
6	coefficient of corre	ression: Meaning of correlati elation, Linear regression (a ssion, Logistic Regression.	•	04 hrs
7		II: Test for independence of ference based on choice of suit	·	04 hrs

Lab: Linear Regression with ANOVA approach, Multiple Regression with	04 hrs
ANOVA approach	04 1113

- 1. Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 5th Edition, John Wiley and Sons
- 2. Probability and Statistics for Engineers and Scientists, Walpole, Myers, Ye, 9th edition, Prentice Hall
- 3. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

Reference Books:

- 1. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 2. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
- 3. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists

Program: Bachelor of Engineering		Semester- IV		
Course Title: Computer Networks – I		Course Code: 24ECSC207		
L-T-F	-T-P: 3-1-0 Credits: 4 Contact Hrs:5hrs/we		ek	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
		Unit –I		
	Introduction: Introduction	to Internet; The Network E	dge and Core; Delay,	
1	Loss, and Throughput in Pac	ket-Switched Networks; Proto	ocol Layer and Service	8 hrs
	Models: OSI and TCP/IP. Net	tworks Attacks.		
	Application Layer: Principl	es of Network Applications;	The Web and HTTP;	
2	Electronic Mail in the Internet - SMTP; The Internet's Directory Service – DNS;			8 hrs
	Dynamically configuring a host – DHCP; Peer-to-peer applications			
		Unit –II		
	Transport-Layer Services: In	troduction, Connectionless T	ransport, Principles of	
3	Reliable Data Transfer Protocol, Connection-Oriented and Connectionless			8 hrs
	Transport, Principle of Cong	estion Control, TCP Congestic	on Control.	
	Network Layer: Data plane	e: Introduction to Data and (Control Plane, Virtual	
4	Circuit and Datagram N	etworks, Internet Protocol:	Datagram Format,	8 hrs
	Fragmentation, IP Addressing			
	Unit –III			
5	Network Layer: Data plane	: NAT, IPv6, Software Defined	Network(SDN)	4 hrs
6	Network Layer: Control Pla	ne and Network Managemer	nt: SDN Control Plane,	4 hrs
	Network Management and	SNMP		7 1113

1. J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson Education, 2017.

Reference Books:

- 1. Peterson, Larry L, Computer networks : A Systems Approach, 5th Edition, The Morgan Kaufmann series in networking, 2012
- 2. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010.

Computer Networks-I Tutorial

SI. No	Exercise	No of Slots
1	Demonstration of n/w commands and tools in command prompt.	1
2	Demonstration of Cisco Packet Tracer network tool: usage of hub, switch, and a router using a simple topology	2
3	Application layer protocol implementation – Manual configuration and DHCP	1
4	Application layer protocol implementation — DNS, SMTP and HTTP	1
5	Demonstration of static routing using Cisco Packet Tracer	1
6	Assessment – 1 (Demonstration of a given topology using Cisco Packet Tracer)	1
7	Demonstration of socket programming using a simple message board application - Connection oriented and connectionless.	2
8	Demonstration of simple banking application using connection oriented socket programming.	1
9	Demonstration of a simple calculator application using connectionless socket programming.	1
10	Practice session for socket programming	1
11	Exercise on usage of Wireshark tool to capture packets in the network.	1
12	 Assessment – 2 i) Implementation of a given application using socket programming ii) Demonstration of packet capture and network performance analysis using the wireshark tool 	1

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
1	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
1111	Q.No8	6	30ive Ally 1

Prog	ram: Bachelor of Enginee	ring	Semester- IV		
Course Title: Object Oriented Programming Course Code: 24ECSC		204			
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/we		ek		
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teac	hing Hrs: 40	Tutorial/Practical:	Exam Duration: 3hrs		
		Unit –I			
	Object Oriented Prog	ramming (OOP) Concepts	and JAVA Language		
	Fundamentals: Introduc	tion to OOP, Object Oriented I	Paradigm, Applications		
1	of OOP. Features of JA	VA, JVM, JDK, Source File St	ructure. Programming	4 hrs	
	constructs and String F	landling. Class Diagrams-UM	L notations. Types of		
Ì	relations between classe	es.			
	Classes and Objects: Cla	ss Fundamentals, Declaring ob	jects, Assigning object		
	reference variables, In	troducing methods, Construc	ctors, this key word,		
2	Garbage collection: The	e finalize method. A closer I	ook at Methods and	6 hrs	
2	Classes: Overloading: M	ethods, Constructors. Using o	bjects as Parameters,	o nrs	
	Returning objects, Access control. Understanding static and final keywords.				
Introducing nested and inner classes.					
	Inheritance and Polymorphism: Inheritance: Basics, Usage of super key				
3	3 , , ,			6 hrs	
class.					
		Unit –II			
		&Exception handling: Pack	_		
4		ection, Importing packages.		6 hrs	
	_	ls, Exception Types, Using try			
	-	ch, Nested try statements, use			
		k: Introduction, List Interface	•		
5		Set Implementation Classes, Th	ne Map Interface, Map	4 hrs	
	Implementation Classe				
_	-	Streams API: Functional pro	_	6 hrs	
6	· · · · · · · · · · · · · · · · · · ·				
operations, Iterators and Streams					
	Unit –III				
7		key features, architecture, se	tting-up a Spring Boot,	4 hrs	
•		a JPA, CRUD Operations.	l docian nottage	1 h	
8	Design Paπerns: Creati	onal, Structural and Behaviora	ii design patterns.	4 hrs	

Textbooks

1. Herbert Schildt, "The Complete Reference", 9th Edition, McGraw-Hill.

Reference Books

- 1. Kathy Sierra and Bert Bates, Head First JAVA, 2, O'Reilly Media.
- 2. Introduction to Java Programming, Liang Y D, Pearson, 7th Edition.

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
ISA-1	20
ISA-2	20
Activity(Design)	10
Total	50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4,5&6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	·

Prog	Program: Bachelor of Engineering Semester- IV				
Course Title: Principles of Compiler Design Course Code:19		Course Code:19ECSC20)3		
L-T-F	-P:3-1-0 Credits: 4 Contact Hrs: 5hrs/week		ek		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	ching Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 03 hrs		
		Unit –I			
	Introduction to compi	lers: Brief History Of Compile	rs, Translation Process,		
1	Major Data Structures	s In Compilers, Chomsky Hiera	archy, Lexical Analysis:	06 hrs	
_	Scanning Process, R	degular Expressions For To	kens, Lexical Errors,	00 1113	
	Applications Of Regula	r Expressions.			
	Finite Automata: In	troduction: Language, Auto	mata, From Regular		
2	Expressions To Deter	ministic Finite Automata (DF	A): E-Nondeterministic	06 hrs	
_	Finite Automata (E-NF	inite Automata (E-NFA), NFA, DFA, DFA Optimization, Finite Automata As			
	Recognizer, Implementation Of Finite Automata				
3	Introduction to Syntax Analysis: Introduction To Grammars, Context-Free			04 hrs	
	Grammars (CFGs), Ambiguity In Grammars And Languages, Role Of Parsing.		041113		
		Unit –II			
4	Top Down Parsing: Introduction, Left Recursion, Left Factoring, LL (1) Parsing,		08 hrs		
	FIRST And FOLLOW Sets, Error Recovery In Top Down Parsing.				
5	Bottom up Parsing: Introduction, SLR (1) Parsing, General LR (1) And LALR (1)		08 hrs		
	Parsing, Error Recovery In Bottom Up Parsing.				
Unit –III					
6	Semantic Analysis: Attributes And Attributes Grammars, Algorithm For		04 hrs		
	Attribute Computation	, Symbol Table, Data Types And	d Data Checking.	041113	
	Intermediate Code Generation: Intermediate Code And Data Structure For				
7	Code Generation, Code Generation Of Data Structure References, Code			04 hrs	
	Generation Of Control Statements.				

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2023.
- 2. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Implementation of lexical analyser using LEX tool.	02
5	Implementation of syntax analyser using YACC tool.	02
6	Top down parsing	01
7	Bottom up parsing	01
8	Implementation of parsing algorithms using C	02
	language	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2 ,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
III	Q.No7	6	Salva Any 1
111	Q.No8	7	Solve Any 1

Program: Bachelor of Engineering Semester- IV					
Course Title: Operating Systems Principles and Programming Course Code:24ECS			SC209		
L-T-P: 4-0-1 Credits: 5 Contact Hrs: 6 hrs,			/week		
ISA Marks: 50	Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 50	Tutorial/Practical: 28hrs	Exam Duration: 3	Hrs		
	Unit -I	·			
Fundamentals of Proce	ess: Operating System Functions	and Characteristics,			
1 Process Concept, Proce	ss Control and Operations, Syster	n Call, Inter Process	07 hrs		
Communication.					
	Concepts, Schedulers, Scheduling	Criteria, Scheduling	07 h		
Algorithms, Multithread	ding models and Thread API, Threa	ad library.	07 hrs		
Process Synchronizatio	n: Synchronization, Producer Cons	sumer problem, The	06 hrs		
critical section problem	critical section problem, Semaphores, Classical problems of synchronization.				
Unit –II					
Deadlocks: Deadlock Sy	Deadlocks: Deadlock System Model and Deadlock Characterization, Methods				
4 for Handling Deadlocks	for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock				
Detection, Recovery fro	Detection, Recovery from Deadlock				
File Management: UNI	X File Types, File systems and File	Attributes, I-nodes			
5 in UNIX, UNIX Kernel S	Support for Files, Directory Files,	Hard and symbolic	07 hrs		
filenames, General File	APIs. File and Record Locking.				
	t: Memory management strat		07 hrs		
	memory allocation, Paging, Struc	ture of page table,			
Segmentation.					
Unit –III			ı		
7	Virtual Memory Management: Virtual Memory Management, Background,				
Demand paging, Page re			5 hrs		
8	Case study: Windows 10, Design Principles, System Components Influential				
Operating Systems: Ma	cintosh Operating System and IBM	I OS/360	5 hrs		

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 10 ed., Wiley-India, 2018.
- 2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2013

Reference Books:

- 1. William Stallings, "Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

List of Experiments

Expt./Job	Experiment/job Details	No. of Labs.
No.		Session/s per batch
1.	Demonstrate the usage of process management API's	1
	viz fork, vfork, exec, exit.	
2.	Demonstrate Inter Process Communication (IPC) using	1
	PIPE / FIFO.	
3.	Implementation Critical Section Problem using	1
	Semaphore.	
	REVIEW -1	
4.	Demonstrate file related system calls OPENDIR,	1
	READDIR, and CLOSEDIR.	
5.	Implement cp commands of an operating system.	1
6.	Demonstrate file locking using 'fcntl' system call.	1
	REVIEW -2	
	Practice Programs	
7.	Implement FCFS/SJF scheduling algorithms	1
8.	Implement the conversion of a virtual address to a	1
	physical address.	
9.	Implement paging algorithms	1

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage	Weightage in Marks
ISA-1 (Theory)	40		
ISA-2 (Theory)	40	80%	40
Flipped Classroom	20		
Laboratory Assessment-1	40	20%	10
Laboratory Assessment-2	40	20%	10
		Total	50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	100	50
Total		50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of	Chapter	Instructions
	20 Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
- 111	Q.No8	8	

Program: Bachelor of Engineering			Semester- IV				
Course Title: Exploratory Data Analysis			Course Code: 24ECSC210				
L-T-P: 2-0-2		Credits: 4	Contact Hrs: 6 hrs/week				
ISA Marks: 50		ESA Marks: 50	Total Marks: 100				
Teaching Hrs: 30		Tutorial/Practical: 56hrs	Exam Duration: 2 hrs				
	Unit –I						
	Data Description and Preprocessing: Ecosystem for data science, Types of						
1	data, statistical descriptions of data, data visualization. Data cleaning, data						
	integration, data reduction, data transformation.						
2	Supervised Learning: Regression: Basic Concepts, Regression: Linear and			5 hrs			
	Logistic, Evaluation metrics: R2score, MSE, RMSE, MAE						
	Unit –II						
	Supervised Learning: Classification: Naive Bayes, K-Nearest Neighbors						
3	(KNN), Model evaluatio	n and selection: Accuracy,	Precision, Recall,	8 hrs			
	Sensitivity, Specificity, F	Score, Techniques to imp	prove classification				
	Accuracy-Ensemble methods: Bagging, Boosting, AdaBoost.						
4	Clustering: Partitioning	-based: K-Means, K-Med	oids, Hierarchical	7 hrs			
4	clustering: Agglomerative, Density-based clustering: DBSCAN.						

Reference Books:

- 1. Wes McKinney, Python for Data Analysis, 3rd Edition, O'Reilly Media, 2022 (Early Release).
- 2. Suresh Kumar Mukhiya, Usman Ahmed, Hands-On Exploratory Data Analysis with Python: Perform EDA techniques to understand, summarize, and investigate your data, Packet Publishing Limited, 27 March 2020.
- 3. Jiawei Han, MichelineKamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann, 2012.

Scheme of Evaluation

Assessment	Conducted for marks	Weightage in Marks	
ISA-1 (Theory)	30	25	
ISA-2 (Theory)	30	23	
Lab assessments	75	25	
	Total	50	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	25
Lab	25	25
	Total	50

Lab Schedule

S.No			Lab Schedule							
3.140	Chapter and Topics	Activity	Lab slots							
1	Revisit of Python basics, Numerical and vectorized computing data manipulation Watch: Home Assignment From Couch to Jupyter: A Beginner's Guide to Data Science Tools & Concepts WiDS Worldwide	Demonstration on python basics. Demonstration on scientific libraries	1							
2	Chapter 1: Data Preprocessing	Demonstration on Data Description: - Count, Pie plot, Histogram, Scatter, plot, line plot, Box plot	1							
3	Chapter 1:Data Preprocessing	 Data Pre-Processing: Filling missing values(binning) min_max & z score normalization, linear regression, feature selection 	1							
4	Assessment 1	Assessment on Data description and Data Preprocessing	1							
5	Course Project/WiDS Datathon Review – 01	Demonstration and presentation of course project	1							
6	Chapter 3: Supervised Learning: Regression	 Demonstration and Practice of building Regression models Model's evaluation using metrics 	1							
7	Chapter 4: Supervised Learning: Classification Watch: Home Assignment https://youtu.be/J2iqDVpbpeo	Demonstration and Practice on Classification models Model's evaluation using metrics	1							
8	Course Project /WiDS Datathon Review – 02	Demonstration and presentation of course project	1							
9	Assessment 2	Assessment on Classification/Regression	1							
10	Chapter 4: Clustering	Practice on Clustering Algorithms (K means, DBSCAN)	1							
11 12	Assessment 3 Course Project /WiDS Datathon Review – 03	Assessment on Clustering Demonstration of complete working project	1 1							
13	Review of portfolio/term paper	Working project	1							

Program: Bachelor of Engineering		Semester- IV
Course Title: Object Oriented Programming Lab		Course Code: 24ECSP203
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3hrs

Experiments	Lab assignments/experiment	
Number		of Slots
1	Demonstration: Introduction to Eclipse/Any other tool IDE (Integrated Development Environment), java programming basics.	5
2	Exercise: Classes and objects, Inheritance, Polymorphism, Exceptions Handling and Collection framework/lambda expressions	4
3	Structured Enquiry: Classes and objects, Inheritance, Polymorphism, Exceptions Handling, Lambda expressions	2
4	Open Ended: Data types, Classes and Objects, Inheritance polymorphism, Exception Handling. Design patterns	3

Text Book:

1. Herbert JAVA The Complete Reference, Herbert Schildt, 10th Ed, 2017, McGraw-Hill.

Reference Books:

- 1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media.
- 2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition.

<u>Evaluation</u>: Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
Internal Semester	Exercises	40
Assessment (80%)	Structured Enquiry	20
	Open Ended Experiment	20
End Semester Assessment (20%)	Structured Enquiry	20
	Total	100

Progra	gram: Bachelor of Engineering Semester- IV			
Cours	e Title: Problem Solving	g and Analysis (AUDIT)	Course Code: 24EHSA2	202
L-T-P:	0-0-0	Credits: 0	Contact Hrs: 1hr/week	(
ISA M	larks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ning Hrs: 16	Tutorial/Practical:	Exam Duration: NA	
		Unit –I		
Analytical Thinking: Analysis of Problems, Puzzles for practice, Human Relations, Direction Tests; Looking for Patterns: Number and Alphabet Series, Coding Decoding; Diagrammatic Solving: Sets and Venn diagrambased puzzles; Visual Reasoning, Clocks and Calendars		4 hrs		
Mathematical Thinking: Number System, Factors and Multiples, Using Simple Equations for Problem Solving, Ratio, Proportion, and Variation		4 hrs		
Werbal Ability: Problem Solving using Analogies, Sentence Completion		4 hrs		
Discussions & Debates: Team efforts in Problem Solving; A Zero Group Discussion, Mock Group Discussions, and Feedback; Discussion v/s Debate; Starting a Group Discussion: Recruitment and other Corporate Scenarios; Evaluation Parameters in a Recruitment Group Discussion, Types of Initiators: Verbal and Thought, Conclusion of a Discussion		4 hrs		

NA

Reference Books:

- 1. R. S. Aggarwal, "A Modern Approach to Verbal and Non Verbal Reasoning", Sultan Chand and Sons, New Delhi, 2018
- 2. R. S. Aggarwal, "Quantitative Aptitude", Sultan Chand and Sons, New Delhi, 2018
- 3. Chopra, "Verbal and Non Verbal Reasoning", MacMillan India
- 4. M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018
- 5. Diana Booher Communicate With Confidence, Mc Graw Hill Publishers
- 6. Norman Lewis Word Power Made Easy, Goyal Publishers
- 7. Cambridge Advanced Learner's Dictionary, Cambridge University Press.
- 8. Kaplan's GRE guide

Semester - V

Progr	Program: Bachelor of Engineering		Semester- V	
Cours	Course Title: Machine Learning and Deep learning		Course Code: 24ECSC306	
L-T-P	: 2-0-2	Credits: 4	Contact Hrs: 6 hrs/we	ek
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 30	Practical Hrs: 60	Exam Duration: 2 hrs	
		Unit –I		
1	Introduction and Reg	ression: Fundamentals of M	L, linear, ridge, lasso,	04 hrs
1	elastic-net regression,	evaluation.		04 1115
2	Classification: Linear	discriminant analysis, logisti	c regression, support	05 hrs
vector machines, decision tree, extra trees, Bayesian networks, ex		networks, evaluation.	05 1118	
Ensemble learning: Bagging, boosting, stacking, random forest, resampling		06 hrs		
methods, regularization for linear and logistic regression.		sion.	00 1113	
Unit –II				
Neural networks: Perceptron, gradient descent, optimization algorithms,			05 hrs	
backpropagation, hyper parameters, regularization.			03 1113	
Deep neural networks: convolutional neural networks, various CNN			06 hrs	
	architectures, model selection and evaluation, bias-variance.			00 1113
Seq2Seq models: Recurrent neural networks, long short-term memory,			04 hrs	
	auto encoders.		04 1113	

Text Books:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning, MIT Press, 2016.

Reference Books:

- Aurelian Gerona, Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Publisher: O'Reilly Media, July 2016.
- 2. Luca Pietro Giovanni Antiga, Thomas Viehmann, Eli Stevens, Deep Learning with PyTorch Manning Publications, 2020.

List of Experiments:

Expt. No.	Experiments	No. of Slots
1	Introduction to Regression, regularization	2
2	Classification algorithms	2
3	Ensemble learning models	2
4	Perceptron networks, neural network training	2
5	Convolutional Neural Networks, State-of-the-art DNN models	2
6	Sequence models	2
7	Course Project	3

Scheme for End Semester Assessment (ESA)

UNIT	6 Questions to be set of 15 Marks	Chapter	Instructions
	Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Lab exam (Course Project)	1,2,3,4,5,6	Lab exam evaluation

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA -I	30	25
ISA – II	30	25
Lab Evaluation	20	10
Course Project	30	15
Total		50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	25
Lab	50	25
	Total	50

Progi	ram: Bachelor of Engineerin	g	Semester: V	
Cour	urse Title: Computer Networks - 2 Course Code: 24ECSC303			
L-T-P	: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teacl	hing Hrs: 40		Exam Duration: 3hrs	
		Unit –I		
	Network Layer- Routing A	gorithms: The Link-Stat	e (LS) Routing Algorithm,	
	The Distance-Vector (DV) R	outing Algorithm, Hiera	rchical Routing, Routing in	
1	the Internet, intra-AS Rout	ting in the Internet: RIF	P, Intra-AS Routing in the	8 hrs
	Internet: OSPF, Inter-AS R	outing: BGP. Broadcast	t and Multicast Routing,	
	Broadcast Routing Algorith	ms.		
	Network Layer – Queuing	theory: Router struct	ure, Buffering strategies:	
2	Input queuing, Output			8 hrs
_	performance of queuing	mechanisms: M/M/1	system, M/M/m system,	0
	M/M/1/B system.			
Unit –II				
	Data Link Layer: Introduc	•		
	Correction Techniques : P	•		
3	Redundancy Check (CRC)b		• .	8 hrs
	Access Links and Protocols: Channel Partitioning Protocols, Random Access			
	Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns			
	Protocols, The Link-Layer P			
4	Switched Local Area Netv 802.3, Token ring 802.5, FD		_	8 hrs
4	Local Area Networks (VLAN		•	0 1113
	LOCAL ATEA NELWOTKS (VLAIN	Unit –III	Switching (IVIF ES).	
	Wireless and Mobile Netw		Network Characteristics	
	802.11 Wireless LANs, Arch		, i	
5	Area Networks: Bluetooth	•	•	4 hrs
	Access, Mobility, Mobile IP, Managing Mobility in Cellular Network.			
Multimedia Networking: Multimedia Networking Applications, Streaming				
6			4 hrs	
	Applications.			

Text Books

- 1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.
- 2. Raj Jain, "Performance evaluation of computer systems", Wiley, 1991.
- 3. Theodore S Rappaport: Wireless Communications, Principles and Practice, 2nd Edition, Pearson Education Asia, 2002.

Reference Books:

- 1. Behrouz A. Forouzan, "Data Communications and Networking with TCPIP Protocol Suite", 6th Edition, McGraw Hill, 2021
- 2. Larry Peterson, Bruce Davie "Computer networks: a systems approach", 6th Edition, 2021.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	numbers	
ı	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3 & 4	Solve Any 2 out of 3
III	Q.No7, Q.No-8	5 & 6	Solve Any 1 out of 2

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
ISA1 (Theory)	40	20
ISA2	40	20
Activity	10	10
	Total	50

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Theory	100	50
	Total	50

Prog	Program: Bachelor of Engineering Semester-V		Semester-V	
Cour	Course Title: Web Technologies Lab		Course Code: 24ECSP304	
L-T-P	: 0-0-2	Credits: 2 Contact Hrs: 4hrs/week		
ISA N	/larks: 80	ESA Marks: 20	Total Marks: 100	
Teacl	hing hrs:	Practical Hrs: 60	Exam Duration: 3hrs	
1	Introduction to HTML basics, JavaScript: Introduction to World Wide Web, Web Application Architecture, HTML Basics, Cascading Style Sheets, JavaScript Basics, Bootstrap			
2	RESTful API using NodeJS and Express: Introduction to Node.js.Building servers using the http and net modules, Node modules and events, Express, REST API client, Postman, Accessing Data, Data Security using Bcrypt. API security using JWT tokens.			
3	React: Introduction to ReactJS, Setting up the development environment, ReactJS Ecosystem, Fundamental Concepts: JSX, Components, State and Lifecycle Handling events, Conditional Rendering. Advanced ReactJS Concepts: Hooks, Context API, Routing, Error Boundaries, Form handling, State Management Libraries, Fetching data from API's.			

Reference Books:

- 1. Robert W. Sebesta." Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 2. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 3. Robin Wieruch, The Road to React: Your journey to master plain yet pragmatic React.js, 2024.

Lab Plan

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1	Demonstration on HTML, CSS, Bootstrap,	03
_	JavaScript	
2	Exercise on HTML, CSS, JavaScript	01
3	Demonstration on Typescript	01
4	Demonstration on NodeJS	02
5	Exercise on NodeJS with Typescript	01
6	Structured Enquiry on Nodejs	01
7	Demonstration on React	03
8	Exercise on React	01
9	Open Ended Experiment	02

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In	Semester	Assessment	Weightage in Marks
Assessme	ent (80%)	Exercise (Problem execution, Viva, Observation Book, etc.)	15+10+10 = 35
		Structured Enquiry	20
		Open ended experiment	25
		Total (ISA)	80
End	Semester	Exercise	20
Assessme	ent (20%)	Total	100

Pro	gram: Bachelor of Engineering	3	Semester: V			
Coi	Course Title: Cloud Computing Course Code: 25ECSC		305			
L-T	-P:2-0-1	Credits: 3	Contact Hrs: 4 hrs/week			
ISA	Marks: 67	ESA Marks: 33	Total Marks: 100			
Tea	aching Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hrs			
		Unit –I				
	Introduction: Motivation fo	r cloud computing, elast	ic computing and its			
1	advantages: Business models	for cloud providers, Types	of clouds: multi-cloud,	5 hrs		
1	cloud platforms. Data center	infrastructure: Network	equipment and multi-	5 ms		
	port server interfaces, Leaf sp	ine network topology.				
	Virtualization and contain	erization: Virtual Mach	ines: approaches to			
	virtualization, levels of trust, li	ive migration of virtual mac	hines. Advantages and			
2	disadvantages of virtual mac	hines, isolation facilities in	an operating system,	5 hrs		
2	Linux namespaces used for	isolation, container appro	ach for isolated apps,	5 nrs		
	Docker containers, Docker	software components, it	ems in a Dockerfile.			
	Monolithic applications in a data center.					
	Automation and Orchestration: Automation in data centers, levels of					
	automation, zero touch provisioning and Infrastructure as code, automation					
3	tools, Orchestration: Automation with a larger scope, Kubernetes: An example					
3	container orchestration syste	m, Kubernetes cluster mo	del, Kubernetes pods:	5 hrs		
	creation, templates, and bind	ding time, Kubernetes noo	les and control plane,			
	worker node software components.					
		Unit –II				
	Microservices: The Microservices approach, advantages and disadvantages of					
4	Microservices, Microservices	Granularity, Communicati	on protocols used for	5 hrs		
-	Microservices, communicatio	n among Microservices, cre	eating a Microservices,			
	server mesh proxy.					
	Serverless computing and	•				
	architecture, scaling a server					
5	approach, stateless servers			5 hrs		
	infrastructure, An example of Serverless processing, advantages and					
	disadvantages of Serverless computing.					
	DevOps for cloud: Introducti	, , ,	• • •	_		
6	Ansible. Configuration manag		ble- Modules, Ad Hoc,	5 hrs		
	Playbooks, Ansible for IT auto	mation.				

Text Books:

- 1. Douglas Comer, "The Cloud Computing: The Future of Computing", 1st ed, Chapman and Hall/CRC 1 July 2021.
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, 3rd Edition, Elsevier February 15, 2022.

Reference Books:

- 1. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, Mastering Cloud Computing, McGraw Hill, 2013.
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, McGraw Hil, 2010.

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of tutorial Slots per batch
1	Hypervisors (Type-I and Type-II). Virtual machines with Para/Full Virtualization	03
2	Implementation of cloud service models (IaaS,PaaS,SaaS)	03
3	Live Migration of VM's and containerization using dockers	02
4	Building Kubernetes cluster	03
5	Create Microservice based web service	02
6	Ansible for IT automation.	02

Prog	ram: Bachelor of Engineerir	ng	Semester - V	
Course Title: Software Engineering		Course Code: 25ECSC301		
L-T-P	: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teacl	hing Hrs: 40	Practical Hrs:	Exam Duration: 3 hrs	
		Unit - I		
Ì	Software Engineering Pro	ocess and Requirement	ts Engineering: Software	
	process models, Proces	s activities, Agile ver	sus traditional method	
1	comparisons. Functional diagrams and use case of specification, requirement elicitation.	description, software re	quirements, requirement	06 hrs
Agile Frameworks: Agile Manifesto and its 12 Principles, Benefits, and Challenges of Agile, Scrum, Extreme Programming (XP), SAFe (Scaled Agile Framework)			05 hrs	
Agile Planning and Estimation: User Stories and Epics, INVEST Model, Story				
3	Points and Planning Poker, Release Planning and Roadmaps, Velocity and Capacity Planning.		05 hrs	
Unit - II				
4	System Modeling & Design: Context models, Interaction models, Structural		08 hrs	
5				08 hrs
	Testing, Test Driven Development (TDD).			
Unit - III				
6	Introduction to DevOps and CI/CD: DevOps Principles, Lifecycle, Delivery pipeline, Technical challenges, and DevOps Tools.			04 hrs
7	Continuous integration and continuous delivery (CI/CD): Essentials of continuous integration, Jenkins architecture, Jenkins security management, Jenkins master-slave architecture, Jenkins delivery pipeline.			04 hrs

Text Books

- 1. Software Engineering by Ian Sommerville, 10th edition, Pearson publication-24 May 2017.
- 2. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation by Jennifer Davis & Ryn Daniels, 1st Edition, Addison-Wesley Signature Series (Fowler), 27 July 2010.

Reference Books:

- 1. Robert C. Martin, "Agile Software Development: Principles, Patterns, and Practices" by, Person New International Edition 17 July 2013.
- 2. Andrew Stellman, Jennifer Greene Learning Agile: Understanding Scrum, XP, Lean, and Kanban, O Reilly, 2015.
- 3. Software Engineering: A Practitioner's Approach, 8/eby Bruce R. Maxim, Roger S. Pressman, McGraw Hill Education; 19 March 2019.
- 4. Software Engineering at Google: Lessons Learned from Programming Over Time by Titus Winters, Tom Manshreck & Hyrum Wright, 1st edition, O'Reilly Media 28 February 2020.

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	40	30
ISA-2 (Theory)	40	30
Activity	20	20
Total		50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	100	50
	Total	50

Program: Bachelor of Engineering		Semester: V
Course Title: Computer Networks Lab		Course Code: 25ECSP305
L-T-P:0-0-1	Credits: 1	Contact Hrs: 2 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs:	Practical Hrs: 28	Exam Duration: 2 hrs

List of Experiments

Sl. No.	Title	No. of slots
Exercises		
1	Introduction to Junos and Demonstration of Initial	1
1	Configuration	1
2	Configuration and analysis of VLAN.	1
3	Configuration and analysis of DHCP	1
4	Configuration and analysis of OSPF	1
Structured	l Enquiry	
5	Introduction to SONiC and Demonstration of Initial	1
J	Configuration	1
6	Configuration and analysis of VLAN using SONiC	1
7	Configuration and analysis of OSPF using SONiC	1
8	Assessment: Implementation of a given topology using SONiC	2
Open End	ed Experiment	
9	Phase 1: Case Study Overview and survey report	1
10	Phase 2: Design a solution and implementation	2
11	Phase 3: Creating a poster and final demonstration	2
	Total	14

Evaluation Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
Internal Semester	Exercises	30
Assessment (80%)	Structured Enquiry	20
	Open Ended Experiment	30
End Semester Assessment (20%)	Structured Enquiry	20
	Total	100

Program: Bachelor of Engineering		Semester- V
Course Title: Mini Project		Course Code: 15ECSW301
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week
CIE Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs:	Practical Hrs: 42(135)	Exam Duration: 3 Hrs

Student Evaluation Matrix

SI. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 & peer review:	Final Demo & exhibition Peer review will be done after review 1 & review 4)	10
		Total	50

Scheme for End Semester Assessment (ESA) ESA Evaluation (50 Marks)

SI. No	Description	Marks
1	Write up – Learning from Project, Personal Contribution to project	05
2	Final demo & Presentation(Solution approach to the identified problem, testing and results)	35
3	Individual Contribution to the team	10
	50	

Program: Bachelor of Engineering Semester - V				
Cour	Course Title: Arithmetical Thinking and Analytical Course Code: 23E		Course Code: 23EHS	A303
Reas	oning (AUDIT)			
L-T-P	P: 0-0-0	Credits: 0	Contact Hrs: 1 hr/w	eek
ISA I	Marks: 100	ESA Marks: 00	Total Marks: 100	
Teac	hing Hrs: 16 hrs		Exam Duration: NA	
		Unit – I		
1	Corporate Methodolog	Importance of Sense of Analgy of Testing Sense of Analysis, Itical, Classification Puzzles, Tea	Puzzles for practice:	4 hrs
2		g I: Problems on Finance: Percent and Efficiency Problems: Ave ations		4 hrs
3	Mathematical Think Combinations	king II: Distribution Proble	ms: Permutations	2 hrs
4		ehension of Passages, Error Detec erbal Ability questions from Cor		6 hrs
Text Book: NA				

References:

- 1. George J Summers, "The Great Book of Puzzles & Teasers", Jaico Publishing House,1989
- 2. Shakuntala Devi, "Puzzles to Puzzle You", Orient Paper Backs, New Delhi, 1976
- 3. R. S. Aggarwal, "A Modern Approach to Logical Reasoning", Sultan Chand and Sons, New Delhi, 2018
- 4. M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018
- 5. Cambridge Advanced Learner's Dictionary, Cambridge University Press.
- 6. Kaplan's GRE guide

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
Minor Exam 1	50
Minor Exam 2	50
Total	100

Course Unitization for Minor Exams and End Semester Assessment

SI No	Chapter	Teaching Hours	No. of Questions in ESA
1	Analytical Thinking	4	N.A.
2	Mathematical Thinking I	4	N.A.
3	Mathematical Thinking II	4	N.A.
4	Verbal Ability	4	N.A.

Note* All questions are compulsory.

Semester - VI

Prog	gram: Bachelor of Engineeri	ng	Semester: VI	
Cou	Course Title: Generative AI Course Code: 25ECSC		Course Code: 25ECSC31	L4
L-T-F	L-T-P: 3-0-1 Credits: 4 Contact Hrs: 05 hrs/we		ek	
ISA I	Marks: 63	ESA Marks: 37	Total Marks: 100	
Teac	hing Hrs: 40	Practical: 28 hrs	Exam Duration: 3 hrs	
		Unit –I		
1	Introduction to General generative learning, and			05 hrs
	synthesis.			
2	Sequence-to-Sequence and Transformer Models: Machine Translation, Seq2Seq architecture, Attention mechanisms, Autoencoders/Decoders, Transformer architecture for text generation.			04 hrs
3	Diffusion Models and Training Paradigms: Continuous vs discrete diffusion, deterministic vs stochastic models, generative denoising, and applications in creative synthesis.		07 hrs	
Unit –II				
4	 Large Language Models (LLMs): Transformer-based large-scale pretraining, fine-tuning, instruction tuning, and model alignment (GPT, BERT, T5). 		05 hrs	
5	Retrieval-Augmented Generation (RAG): Architecture, embeddings, vector databases, context retrieval, and integration using frameworks.		05 hrs	
6	6 Multimodal Generative AI: Text-to-Image (Stable Diffusion, DALL-E), Text-to-Video (Sora, Pika), and Audio Generation Models.		06 hrs	
Unit –III				
7	7 Synthetic Data Generation and Augmentation: Creating domain-specific training datasets, bias control, and privacy-preserving generation.		04 hrs	
8	Evaluation, Ethics, and Deployment: Evaluation metrics, hallucination analysis, responsible AI, copyright, and deployment on cloud/edge.		04 hrs	
Toyt	Rooks:			

Text Books:

- 1. David Foster, Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, O'Reilly, 2022.
- 2. Andriy Burkov, Generative AI: From Basics to Advanced, 2024 Edition.
- 3. Lewis et al., Retrieval-Augmented Generation for Knowledge-Intensive Tasks, Meta Al Research, 2020.

References:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.
- 2. Lilian Weng, Understanding Diffusion Models, OpenAl Blog.
- 3. Harrison Chase, LangChain Documentation & Applications, 2024.
- 4. Andrew Ng et al., Generative Al for Everyone, Deep Learning.Al.lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press.

Evaluation Scheme ISA

Assessment	Conducted for Marks	ISA Weightage
ISA1	40	40
ISA2	40	
Lab + Course Project	40	23
Total	120	63

Evaluation Scheme ESA

Assessment	Conducted for Marks	ISA Weightage
ESA Theory	100	37
Exam		

List of Experiments:

Experiment No.	Brief description about the experiment	Number of slots
1.	Experiments on Text Classification- word2vec, Language Modeling, Machine Translation, Text Summarization	2
2.	Experiments on Machine Translation - seq2seq model, Text Summarization	2
3.	Experiments on Part-of-Speech (POS) Tagging, Question Answering Systems, Topic Modeling	2
4.	 Implementing a Basic Diffusion Model Training a Diffusion Model Image Denoising Using Diffusion Models 	2
5.	Data pre-processing and Tokenization, Building a Simple Language Model	1
6.	Implementing Attention Mechanisms, Exploring Transformer Architectures	1

_	Fine-Tuning for Specific Tasks	
	Ethical Considerations and Bias Detection	4
/.	Real-World Application Development	4
	Performance Optimization and Scaling	

Program: Bachelor of Engineering Semester - VI					
Course	Course Title: Wireless and Mobile Networks Course Code: 25ECSC			311	
L-T-P:	3-0-1	-1 Credits: 04 Contact Hours: 5hrs/week		week	
ISA M	arks: 63	ESA Marks: 37 Total Marks: 100			
Teachi	ing Hours: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	i	
		Unit I			
	Wireless Networks: W	ireless Links and Network Chara	cteristics, CDMA, Wi-		
	Fi: 802.11 Wireless	LANs, The 802.11 Architectur	e, The 802.11 MAC	04 hrs	
1	Protocol, The IEEE 802	.11 Frame, Mobility in the Same	P IP Subnet, Advanced	04 1113	
	Features in 802.11, Pe	rsonal Area Networks: Bluetoot	h and Zigbee.		
	Cellular Networks: Ce	ellular network evolution (1G to	o 4G), System Design		
	Fundamentals, Freque	ency reuse, channel assignmer	nt strategies, handoff		
2	strategies – prioriti	zing handoffs, Practical Han	doff considerations.	06 hrs	
	Interference and syst	tem capacity, co-channel inter	ference and system	00 15	
	capacity, channel planning for wireless systems, adjacent channel				
	interference.				
	Mobile Radio Propagation: Introduction to radio wave propagation, Free				
3	space propagation m	odel, Relating power to elec	tric field, Reflection,	06 hrs	
	Diffraction, Scattering.				
	Unit II				
	5G Architecture and applications: 5G Standards and Specifications: ITU-R,				
_	ITU-T and IMT-2020, 3GPP; 5G Architecture and Use Cases: NGMN 5G			06 hrs	
4		ork, 3GPP 5G Architecture.		UO IIIS	
	·	Machine Type Communication	s, Ultra-Reliable and		
	Low-Latency Commun		Functional Cality DAN		
5				05 hrs	
	Protocol Architecture.				
6				05 hrs	
	Architecture, Network Slicing.				
	Unit III				
7	NR Air Interface: Wireless Transmission, Line-of-Sight Transmission, Line-of-			04 hrs	
	Sight Transmission Impairments.				
0	Multi-Access Edge Co	mputing: MEC Architectural Co	ncepts, MEC Support	04 hrs	
8	for Network Slicing, M	EC Use Cases.			

Text Books

- 1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", Cambridge University Press, 2024.
- 3. William Stallings, "5G Wireless: A Comprehensive Introduction", 1st Edition, Addison-Wesley, 2021.

Reference Books:

- 1. Erik Dahlman, Stefan Parkvall, Johan Skold, "5G NR: The next generation wireless access technology", 2nd Edition, Academic Press Inc, 2020.
- 2. Cory Beard and William Stallings, "Wireless Communication Networks and Systems", Global Edition 1, Pearson, 5 January 2016.

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage
ISA-1 (Theory)	30	38
ISA-2 (Theory)	30	50
Laboratory Assessment	60	25
Total		63

ESA Scheme

Assessment	Conducted for marks	Weightage
ESA (Theory)	100	37
Total		37

Lab experiments:

Expt./Job	Brief description about the experiment/job	No. of Lab
No.		Slots
1	Packet analysis of Wi-Fi and Bluetooth	02
2	 Mobile network Use Case Simulation Simulate eMBB, mMTC, and URLLC traffic scenarios using NS-3 or MATLAB. Measure latency, throughput, and packet loss. 	02
3	Network Slicing Create virtual network slices using Mininet or Kubernetes for isolated services.	04

	Demonstrate how slices are used for different use cases		
	(e.g., IoT, video streaming).		
	Radio Access Network		
4	Simulate centralized vs distributed RAN using srsRAN or	02	
4	OpenAirInterface (OAI).	03	
	 Identify performance trade-offs. 		
	Simulate Mobile Edge Compute with Network Slicing		
5	Combine MEC and network slicing: assign slices to	03	
	different edge applications and analyze performance.		

Program: Bachelor of Engineering		Semester-VI
Course Title: Embedded Systems and IoT		Course Code: 24ECSC308
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 67	ESA Marks: 33	Total Marks: 100
Teaching Hrs: 30	Practical Hrs: 28	Exam Duration: NA

	Unit – I	
1	Introduction to Embedded Systems: Characteristics of Embedded Systems, Embedded system architecture: CPU, memory, peripherals, Hardware Components and Interfaces: Sensors, Actuators, and Communication Interfaces, Communication Protocols: UART, SPI, I2C, CAN.	5 hrs
2	IoT Architecture and Protocols: IoT Architecture, Protocol Stack, Application Layer Protocols: HTTP, CoAP, MQTT, AMQP, Network Layer Protocols: 6LoWPAN, RPL, Link Layer Protocols: Wi-Fi, BLE, Zigbee, Z-Wave, LoRaWAN	6 hrs
3	IoT Platforms: Introduction to IoT Boards, IoT deployment for Raspberry Pi /Arduino/ARM-Mbed/Beaglebone/Jetson Nano/Node-MCU Equivalent platform – Interfacing of Sensors and actuators	4 hrs
4	IoT Connectivity and Communication Technologies: Short-Range Communication Technologies: Wi-Fi, Bluetooth, Zigbee, Long-Range Communication Technologies: LPWAN, LoRa, NB-IoT, Cellular IoT: LTE-M, NB-IoT, 5G.	6 hrs
5	IoT Physical Servers & Cloud Offerings: Introduction to Cloud Storage models and communication APIs, Webserver – Web server for IoT, Cloud for IoT, Designing a RESTful web API.	5 hrs
6	Case studies: Home automation, Smart Cities, Environment, Energy, Agriculture, Health, Retail with emphasis on data analytics and security. Industrial IoT (IIoT), Role of AI/ML in IoT (AIoT).	4 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. R. Suganya, Bhogadi Lokeswara Rao, M. Krishnaraj, S. Bharathidasan, "Embedded Systems and IoT", RK Publication, 2024.
- 2. Grace, J & Sharma, Sandeep, "EMBEDDED SYSTEMS AND IoT", Publisher: San, December 2024.

References

1. Abu Husin, Norhidayuwati, "EMBEDDED INTERNET OF THINGS IoT for Beginner", Publisher: Politeknik Muadzam Shah, June 2024.

- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 3. Pravin Goyal, "Internet of Things and Embedded Systems", TechKnowledge Publications, 30 June 2023.
- 4. Hands-On IoT: Wi-Fi and Embedded Web Development by Erwin Ouyang, Jun 2020.

Evaluation Scheme

ISA Scheme

Assessment	Conducted for marks	Weightage	
ISA-1 (Theory)	30	34	
ISA-2 (Theory)	30	34	
Laboratory	60	33	
Assessment	00	33	
Total	67		

ESA Scheme

Assessment	Conducted for marks	Weightage
ESA (Theory)	60	33
Total		33

List of Experiments:

Expt.	Experiments	No. of	
No.		Slots	
1.	Embedded System Development Boards (Arduino/Raspberry Pi/ESP32).	1	
2.	Sensor and actuator interfacing: Multiple sensors, motors and relays.	1	
3.	Communication Protocols: UART, SPI, I2C Programming.	2	
4.	MQTT Protocol implementation for IoT Data Publishing/Subscribing.		
5.	Designing an IoT system for sensor data acquisition and cloud-based storage and analytics.		
6.	Wireless Communication Setup: Wi-Fi, BLE		
7.	Data Visualization Using IoT Dashboards (Node-RED, ThingsBoard)		
8.	Edge AI using TinyML: Object/person detection using Node-RED and Raspberry Pi/ NodeMCU.		
9.	Course Project (Reviews -03, Demonstration of project-01)	4	

Program: Bachelor of Engineering		Semester: VI
Course Title: Minor Project		Course Code: 24ECSW302
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Practical: 42 hrs	Exam Duration: 3 hrs

The objective of the minor project is to develop deeper understanding of the chosen area of technology vertical and develop applications with a comprehensive and systematic approach.

Project Domains:

Networking	Data Engineering	System	AI & ML	Industry/Domain
		Engineering		
Internet of	Data Analytics	Parallel	Supervised	As per industry
Things	Data Analytics	Computing	Learning	requirements
Software	Data Processing	High	Unsupervised	
Defined	(Image/Video/Au	Performance	Learning	-
Network	dio/Text)	Computing	Learning	
Cloud	Natural language	Quantum	Deep	
Computing	processing	Computing	Learning	-
Blockchain	Computer Vision		Generative	
DIOCKCIIAIII	Computer vision	-	Models	-
5G, Wireless Ad-				
hoc & Sensor	-	-	-	-
Networks				
Any other related themes				

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Assessment Weightage in		Assessment Weightage in
Marks		Marks
	Review-1	10
ISA	Review-2	20
	Review-3	20
	ESA	50
	Total	100

Scheme for In-Semester Assessment (ISA)

ISA (periodic reviews)	Review Expectation	Guide Marks	Reviewer Marks	Total Marks
Review-1	Identification of problem, objectives, requirement analysis and report.	5	5	10
Review-2	Design and Implementation: coding as per standards, module testing.	10	10	20
Review-3	System testing and demo of the final project, quality of code, result analysis and project report.	10	10	20
	Total		25	50

Scheme for End Semester Assessment (ESA)

Parameters	Pl's	Max Marks	со	BL
Write up (Problem statement, solution framework and Individual Contribution	14.3.1	20	1	4
to the project)	2		_	
Project demonstration with solution approach to the identified problem	6.1.2	15	3	3
Presentation	9.3.1	10	5	3
Report	10.1.2	05	4	3
Total = 50				

Prog	ram: Bachelor of Engi	neering	Semester: VI		
				LICC201	
	Course Title: Professional Aptitude and Logical Reasoning		Course Code: 16EHSC301		
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs	s/week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 40		Exam Duration: 3	3 hrs	
	Unit –I- Ar	ithmetical Reasoning and Analyti	cal Thinking		
1	Arithmetical Reason	ing		10hrs	
2	2 Analytical Thinking			4 hrs	
3	3 Syllogistic Logic			3hrs	
		Unit –II			
4	Verbal Logic			4 hrs	
5	5 Non-Verbal Logic			4 hrs	
		Unit –III- Lateral Thinking			
6	Lateral Thinking			4 hrs	
Text	Text Books:				
1. A Modern Approach to Verbal and Non – Verbal Reasoning – R. S. Aggarwal, Sultan					
Chand and Sons, New Delhi					
2. Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi				i	
	Reference Books:				
	1.Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India				

Evaluation Scheme ISA Scheme

2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi

Assessment	Weight age in Marks
ISA 1	15
ISA 2	15
Assignments Written	10
Class Tests	10
Total	50

^{**}The indicated method may be adopted for CIE after due approval from DUGC of Department of Humanities.

Progran	Program: Bachelor of Engineering Semester: VI			
Course	Course Title: Industry Readiness & Leadership Skills (AUDIT) Course Code: 23E		ISA304	
L-T-P: 0	-0-0	Credits: 0	Contact Hrs: 1hr/v	veek
ISA Ma	rks: 100	ESA Marks: NA	Total Marks: 100	
Teachin	ng Hrs: 16		Exam Duration: NA	A
		Unit –I		
	Written Communication: Successful Job Applications, Résumé Writing,			
1	Emails, Letters, Business Communication, Essay, and Paragraph Writing			
	for Recruitment Tests			
2	Interview Handling Skills: Understanding Interviewer Psychology,			4 hrs
	Common Questions in HR Interviews, Grooming, Interview Etiquette			41113
	Lateral & Creative Thinking: Lateral Thinking by Edward de Bono,			
3	Fractionation and Brain Storming, Mind Maps, Creativity Enhancement			4 hrs
	through Activities			
	Team Building & Leadership Skills: Communication in a Team,			
4	Leadership Styles, Playing a Team member, Belbin's team roles, Ethics,			2 hrs
	Effective Leadership Stra	tegies		

Text Books:

NA

Reference Books:

- 1. Diana Booher E Writing, Laxmi Publications
- 2. Edward de Bono Lateral Thinking A Textbook of Creativity, Penguin UK
- 3. William Strunk, E B White The Elements of Style, Pearson
- 4. John Maxwell The 17 Essential Qualities of a Team Player, HarperCollins Leadership
- 5. Robin Ryan 60 Seconds and You're Hired! Penguin Books

Professional Electives-1, 2 & 3

Progra	am: Bachelor of Engine	ering				
Course	e Title: Signals & Syste	ms	Course Code: 21ECSE31	3		
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3hrs/weel	(
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100			
Teachi	ing Hrs: 40		Exam Duration: 3 hrs			
	Unit –I					
1	of signals, (analog deterministic and rapower), basic oper variable, time scalin (Impulse, step, raportions(ser	on: Definition of a signals and discrete signal, per and on signals, even and on ation on signals (independent of g, multiplication, time rever one, sinusoidal, complex ies, parallel and cascade) eity , superposition, linearity usality)	eriodic and aperiodic, dd signals, energy and nt variable, dependent sal), elementary signals exponential), Systems , properties of linear	10 hrs		
2	LTI System Representation: Impulse response representation and properties, Convolution, convolution sum and convolution integral. Differential and difference equation Representation, Block diagram representation 10 hrs					
Unit –II						
	Fourier representati	on for signals: Introduction	, Discrete time Fourier			
3	series (derivation of series excluded) and their properties. Discrete Fourier transform (derivation of transform excluded) and properties 10 hrs					
4	Applications of Fourier transform: Introduction, frequency response of LTI systems, Fourier transform representation of periodic signals, Fourier transform representation of discrete time signals. Sampling of continuous time signals.					
	1	Unit –III				
5	Z-transform: Definition of z-transform, Properties of ROC, Properties of Z-transforms: Inverse z-transforms (Partial Fraction method, long division method), Unilateral Z-transform, Transform of LTI.					
1. S 2. /	Simon Haykin and Barr	nentioned in the approved so y Van Veen, Signals and Systo n S Willsky and S. Hamid Nav	ems, 2 nd edition Wiley,20			
		nals and Systems, 2 nd editior	n, McGraw Hill ,2017			

- 2. Ganesh Rao and Satish Tunga, Signals and Systems 1st edition, Cengage India, 2017
- 3. M. J. Roberts, Fundamentals of Signals and Systems 2nd edition, McGraw Hill Education, 2017

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
""	Q.No8	5	Solve Ally I out of 2

Progr	ram: Bachelor of Engineerir	ng			
Cours	se Title: Fundamentals of Ir	nage and Video Processing	Course Code: 24EC	SE312	
L-T-P:	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/		Contact Hrs: 4hrs/	week	
ISA N	1arks: 67	ESA Marks: 33	Total Marks: 100		
Teach	ning Hrs: 30	Practical Hrs: 28	Exam Duration: 2 h	nrs	
		Unit –I			
	Introduction to Image an	d Video Processing: Introduc	tion, 2-dimensional		
1	(2D) and 3-dimension	al (3D) signals, analog/o	ligital dichotomy,	4 hrs	
	electromagnetic spectrum	, and applications.			
	Signals and Systems: Fur	idamentals of 2D signals and	systems. Complex		
2	exponential signals, linea	r space-invariant systems, 2	O convolution, and	4 hrs	
	filtering in the spatial dom				
3		mpling: 2D Fourier transform		4 hrs	
		ering in the frequency domair			
		cations of motion estimation,	•	4 hrs	
4	4 block matching, spatio-temporal gradient methods, and fundamentals of				
	color image processing.				
	Unit –II				
_		oint-wise intensity transfor		2 6.44	
5	processing, linear and non-linear noise smoothing, sharpening, homomorphic filtering, pseudo-coloring, and video enhancement.			3 hrs	
		uction to image and video			
	,	· ·	,, ,		
	restoration, matrix-vector notation for images, inverse filtering, constrained least squares (CLS), set-theoretic restoration approaches, iterative				
6	. , , , ,	d spatially adaptive algorithms	•	5 hrs	
		r, Wiener noise smoothing		00	
		a posteriori estimation, and B			
	algorithms.	,	,		
		ession: Elements of informati	on theory, Huffman		
	coding, run-length coding	and fax, arithmetic coding, dic	tionary techniques,		
7	and predictive coding. Scalar and vector quantization, differential pulse-			5 hrs	
	code modulation, fractal image compression, transform coding, JPEG, and				
	sub band image compress	ion.			
	Video Compression: Motion	on-compensated hybrid video	encoding and video		
8	compression standards in	ncluding H.261, H.263, H.26	4, H.265, MPEG-1,	3 hrs	
	MPEG-2, and MPEG-4.				

	Unit –III				
9	Image and Video Segmentation: Intensity discontinuity and intensity similarity, watersheds and K-means algorithms, and other advanced methods.	4 hrs			
10	Sparsity: Sparsity-promoting norms, matching pursuit algorithm, smooth reformulations, and an overview of the applications.	4 hrs			

Text Books:

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 4th edition, Pearson Education (Asia) Pte. Ltd/Prentice Hall of India, 2018.
- 2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

Reference Books:

- 3. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 4. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009.

Laboratory Plan

Week	Topics for discussion	Experiments for practical session	
No			
0	Overview of the Course, Registration		
	for the MOOC course Fundamentals of	Guidelines for the lab sessions.	
	Digital and Image Processing.		
	Introduction to course and	Introduction to lab session, Introduction	
1	applications of Image and Video	to Python and OpenCV. Sample basic	
	processing	programs.	
	Introduction to 2D signals and systems,	filtering in spatial domain (Averaging	
2	2D Convolution and filtering in spatial		
	domain.	filter and Median filter)	
3	Fourier Transform and Sampling , DFT	Compute DFT of given function, filtering	
3	Tourier transform and sampling , of t	in the frequency domain (LPF,HPF)	
	Motion Estimation and color image	Implement Block matching method and	
4	processing.	Differential method. Illustration and	
	processing.	conversion of color models.	
		Intensity transformations, Histogram	
5	Imaga Enhancomont	processing (Equalization and	
3	Image Enhancement	specification), smoothing and	
		sharpening.	
6	Imaga Pacayary imaga rastaration	Spatial and frequency domain filters.	
6	Image Recovery - image restoration	Selection of course project topic.	

7	Lossless Compression methods	Implementation of lossless image		
_ ′		compression methods.		
8	Lossy Compression methods	Implementation of lossy image		
8	Lossy Compression methods	compression methods.		
9	Image segmentation	Edge detection and region based		
		segmentation.		
10	Video Segmentation	Basic programs on video processing and		
		Shot detection.		
11	Review 1 of Course project			
12	Review 2 of Course project			
13	Final review of course project			
14	Submission of report on learning of			
	MOOC course and course project.			

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks	
Theory	60	33	
	Total	33	

Program: Bachelor of Engineering					
Cours	Course Title: Computer Vision Course Code: 24ECSE			339	
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/week		
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100		
Teach	Teaching Hrs: 40 Practical Hrs: Exam Duration: 3		Exam Duration: 3 hr	S	
		Unit – I			
1	Introduction: Computer Vision Overview, Pixels and image representation, Filters: Linear systems, Convolutions and cross-correlations; Lab: Basics, Filters			7 hrs	
2	Features and filtering: Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and fitting: RANSAC Local features, Harris corner detection, Feature descriptors: Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges, Features			9 hrs	
	Unit – II				
3	Semantic segmentation: Perceptual grouping, Agglomerative clustering, Super pixels and over segmentation; Clustering: K-means, Mean shift; Visual Bag of Words: Texture features, Visual bag of words; Lab: Resizing, clustering, recognition			8 hrs	
4	Motion: Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT) 8 htracker; Lab: Object detection, optical flow.			8 hrs	
	Unit – III				
6	<u>-</u>	age stitching, Image pyramid Face identification, Detecting		8 hrs	
l			·	·	

Reference Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.
- 2. D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India, 2nd Ed, 2015.
- 3. R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd Edition, 2004.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	15	30
ISA-2 (Theory)	15	30
Activity	20	20
Total		50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	100	50
	Total	50

Program: Bachelor of Engineering					
Course Title: Responsible AI Course Code: 25ECSE32			6		
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 05 hrs/week		
ISA N	SA Marks: 67 ESA Marks: 33 Total Marks: 100				
Teac	Teaching Hrs: 30 Practical: 42 hrs Exam Duration: 2 hr		Exam Duration: 2 hrs		
		Unit –I			
	Fundamentals of Artificia	l Intelligence and Respo	onsible AI: Introduction	05.11	
1	to Artificial Intelligence F	undamentals, Introduc	tion to Responsible AI,	05 Hrs	
	Need for Ethics in AI: AI for Society and Humanity.				
	Fairness and Bias in Al Sys	stems: Sources of Biases	in AI, Exploratory Data		
2	Analysis and Dataset	Limitations, Bias M	litigation Techniques:	07 Hrs	
-	Preprocessing, Inprocessing, Postprocessing, Fairness Metrics: Group				
	Fairness, Individual Fairness, Counterfactual Fairness				
	Interpretability and Explainability in AI: Interpretability through				
3	Simplification and Visualization, Intrinsic Interpretable Methods, Post Hoc			05 Hrs	
	Interpretability, Explainability through Causality, Model-Agnostic				
	Interpretation Techniques.				
	Unit –II				
	Ethics, Accountability, a	•	,		
4	and Fairness Assessment, Principles for Ethical Al Practices, Privacy			06 Hrs	
•	Concerns in AI and Introduction to Privacy Attacks, Privacy-Preserving				
	Techniques: Differential Privacy, Federated Learning				
	Real-World Applications and Case Studies (3 hours): Case Studies (Pick				
5	any 3):			05 Hrs	
	Recommendation System	ns, Medical Diagnosis,	Hiring / Education,		
	Computer Vision, Natural Language Processing				

Textbooks:

- 1. "Fairness and Machine Learning: Limitations and Opportunities", Solon Barocas, Moritz Hardt, Arvind Narayanan
- 2. "Interpretable Machine Learning", Christoph Molnar
- 3. "The Ethical Algorithm: The Science of Socially Aware Algorithm Design" Michael Kearns and Aaron Roth
- 4. "Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way" Virginia Dignum

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Lab Plan:

Experiment	Brief description about the experiment	Number
No.	No.	
1.	Building and Understanding a Simple AI System	2
2.	Bias Detection and Fairness Mitigation in Classification	2
3.	Visualize and interpret the Black-Box Models with SHAP and LIME	2
4.	Implement Privacy-Preserving Learning	2
5.	Ethical Impact Analysis of AI Applications	
6.	 Fine-Tuning for Specific Tasks Ethical Considerations and Bias Detection Real-World Application Development Performance Optimization and Scaling 	4

Prog	ram: Bachelor of Engineeri	ng		
Cour	ourse Title: Multimodal AI Course Code: 25ECSE327			
L-T-P	2-0-1 Credits: 3		Contact Hrs: 04 hrs/week	
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Practical: 42 hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to Multimo	odality: Definitions, sco	pe, and significance; Data	
1	Modalities: Text, image, a	udio, video; Characteristi	ics and challenges; Methods	07 Hrs
	for extracting features fro	m different modalities; D	oifferent Learning methods.	
	Multimodal Mechanisms: Self-attention, cross-attention, and their applications, Generative Models: GANs, VAEs, and their multimodal variants,			
2	Multimodal Representation	on Learning: Joint and co	oordinated representations,	08 Hrs
	Fusion Strategies: Early fus	sion, late fusion, hybrid fo	usion techniques, Evaluation	
	Metrics: Assessing the performance			
Unit –II				
Multimodal translation: Multimodal Emotion Recognition, Multimodal				
3	Dialogue Systems: Integrating text, speech, and visual inputs in conversational		08 Hrs	
3	AI, Multimodal Machine Translation: Techniques and challenges in translating		08 1113	
across modalities,				
4	Multimodal Information Retrieval: Searching and retrieving information from			07 Hrs
4	multimodal datasets, Addressing bias, fairness, and privacy in multimodal Al		d privacy in multimodal AI.	טו חוס

Reference books:

- 1. Zhou, Zheng. Multimodal AI: Algorithms and Applications. Springer, 2021.
- 2. Baltrusaitis, Tadas, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal Machine Learning: Techniques and Applications. San Rafael, CA: Morgan & Claypool, 2018

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Progra	Program: Bachelor of Engineering			
Cours	e Title: AI in Healthcard	e	Course Code: 25ECSE32	8
L-T-P:	2-0-1	Credits: 03	Contact Hours: 4hrs/week	
ISA M	larks: 67	ESA Marks: 33	Total Marks: 100	
Teach	ing Hours: 30	Tutorial/Practical: 28 hrs	Exam Duration: 2hrs	
		Unit I		
	Fundamentals of AI a	nd Healthcare Systems: Intr	oduction to AI, ML, and	
	DL, overview of heal	thcare systems and clinical	data, Electronic Health	
1	Records (EHRs), struct	tured vs unstructured data,	challenges in healthcare	07 hrs
	data: missing values, p	rivacy, standardization, Ethic	al issues, data protection	
	(HIPAA/GDPR), and int	terpretability, AI integration i	nto clinical workflows.	
	Signal Processing ar	nd AI in Physiological Da	ta Analysis: Basics of	
	biomedical signal pro	ocessing, common physiolog	gical signals: ECG, EEG,	
2	EMG, PPG. Preproc	essing: Filtering, artifact r	removal, normalization,	08 hrs
	Feature extraction (time-domain, frequency-domain, wavelet transforms),			
	AI/ML models for classification/detection in signal data.			
	Unit II			
	_	ng and Personalized Health		
	•	is (CT, MRI, X-ray, Ultrasound	,	
		entation and classification		
3	healthcare imagii	O	edicine: Genomics,	07 hrs
		patient-specific models, Al		
		uture of AI in healthcare: Exp	olainable AI (XAI), digital	
	twins.			
		olecular modelling using art	_	
4		, Molecular modelling and		08 hrs
		nolecules, Computational mo		- -
1	inoleculai modelling.	Drug characterization using is	so potentiai suriaces.	

Text Books

1. "Artificial Intelligence in Healthcare", By Adam Bohr and Kaveh Memarzadeh, Academic Press, 2020.

Reference Books:

- 1. "Biomedical Signal Processing and Artificial Intelligence in Healthcare" Walid A. Zgallai (Springer, 2021)
- 2. K. Franks and R. Rudman, *Machine Learning for Healthcare*. Boca Raton, FL, USA: CRC Press, 2021.
- 3. K. Najarian and R. Splinter, *Biomedical Signal and Image Processing*, 2nd ed. Boca Raton, FL, USA: CRC Press, 2012.

Online Courses:

- AI in Healthcare Specialization Coursera by deeplearning.ai
- WEKA: Exploring Machine Learning for Healthcare NPTEL Course

Scheme for In-Semester Assessment (ISA)

Assessment	Conducted for marks	Weightage	
ISA-1 (Theory)	30	33	
ISA-2 (Theory)	30	33	
Laboratory	60	34	
Assessment	00	54	
	Total	67	

Scheme for End Semester Assessment (ESA)

Assessment	Conducted for marks	Weightage
ESA (Theory)	60	33
	Total	33

Lab experiments:

Expt./Job	Brief description about the experiment/job		
No.	No.		
		Slots	
	Introduction:		
1	Exploring Electronic Health Records, Medical Data Visualization,	1	
	Data Protection etc.		
	Acquisition and Visualization of Physiological Signals		
2	Handling basic physiological signals (ECG, EEG, and EMG signals)	2	
	using Python		
	Feature Extraction from Physiological Signals		
3	Extract meaningful features from both time and frequency	2	
	domains of Psychological Signals		
	Medical Image Classification Using Transfer Learning		
4	Apply pre-trained CNN models for classifying medical images	2	
	(e.g., chest X-rays for pneumonia detection).		
	Semantic Segmentation of Medical Images		
5	Perform segmentation of medical images (e.g., tumor or organ	2	
	boundaries in MRI) using a CNN-based model.		
	Al for Personalized Healthcare Using Wearable Data		
6	Analyze physiological data from wearables (e.g., heart rate,	2	
Ü	activity levels) to build a patient-specific model for remote health	_	
	monitoring.		
	Molecular Property Prediction Using Machine Learning		
7	Use AI/ML models to predict drug-like properties (e.g., solubility,	2	
	bioavailability, toxicity) from molecular structure data.		

Program: Bachelor of Engineering				
Course Title: Informatica-Intelligent Data Management Cloud Course Code: 24ECSI			SE322	
L-T-P	-T-P: 1-0-2 Credits: 3 Contact Hrs: 5 hrs/v		week	
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teacl	hing Hrs: 15	Practical Hrs: 56	Exam Duration: NA	<u> </u>
		Unit - I		
	Informatica Cloud Overvie	w: Fundamentals of Data ware	house, Overview of	
	Informatica cloud service	es, Cloud Data Integration,	Cloud Application	
1		iality, Cloud MDM & 360 Appli	• •	3 hrs
		Cloud Integration Hub, Cloud		
	Marketplace	,	·	
	IDMC Administration Fundamentals: Informatica Cloud Architecture,			
_	Introduction to IICS Services, Administration services, User Management,			
2	Agent group and services, Types of connectors, Asset management and			3 hrs
	Schedule.			
	Cloud Data Integration	Services: Informatica Cloud	Overview, Runtime	
	Environments and Conn	ections, Synchronization Task	c, Cloud Mapping	
3	Designer, Cloud Mapping I	Designer – Transformations, M	apping Parameters,	
3	Expression Macro and Dy	namic Linking, Replication Ta	sk, (Masking Task),	5 hrs
	(Mass Ingestion Task), (Ta	sk flows), (Hierarchical Conne	ctivity), (Intelligent	
	Structure Model).			
	Cloud Application Integr	ation Services: Overview of	Cloud Application	
	Integration, Understand th	ne Basics: Process Designer, W	orking with Assets,	
4	Adding Web Services to a	Process, Fault Handling, Intro	oduction to Guides	4 hrs
	Designer, API Managemen	t, CAI and CDI Integration, Trou	bleshooting, Tips &	+ 1113
	Tricks, Best Practices.			
Text	book:			

1. Rahul Malewar: Learning Informatica Cloud Services: Learn the art of implementing ETL on Cloud.

Reference Weblink:

1. https://now.informatica.com/Customer-360-SaaS-for-Business-Users-Instructor-Led.html

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
IS (Theory)	40	33
Lab	60	34
	Total	67

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Lab	40	33
	Total	33

Laboratory Plan

SI. No.	Experiments	Number of slots
1.	Creating Informatica Intelligent Cloud Services (IICS) Setting up Lab Environment, Configure SQL Server Database, Navigating the IICS Interface, Installing Secure Agent	2
2.	Creating Flat File Connections using Cloud Data Integration	1
3.	Creating a Salesforce Connection, Creating SQL Server Connections, Creating a Synchronization Task,	2
4.	Using Filter, Expression, and Lookup in a Synchronization Task, Using Saved Query in a Synchronization Task, Creating a Data Transfer Task	2
5.	IICS Transformations, Joiner and Lookup Transformations, Mapplets	3
6.	Course Project (Reviews -03, Demonstration of project-01)	4

Program: Bachelor of Engineering				
Course Title: Augmented and Virtual Reality Course Code: 25ECSE329				
L-T-P: 2-	0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Mar	ks: 67	ESA Marks: 33	Total Marks: 100	
Teaching	g Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hrs	
1	Working VR in Unity: Unity XR, headset and controller tracking, loss of tracking, Unity core APIs related to XR functionality			6 hrs
2	Interaction and Locomotion: interact with objects in VR, scene exploration, teleportation, and grab and throw interactions, how to avoid causing nausea and dizziness for your user.			6 hrs
3	VR UX with the Unity API: Text Issues in VR, Optimizing Text Readability, Attaching Displays to a Controller, Interacting with Canvas Elements			8 hrs
4	Moving Constrained Objects with Tracking, Hitting Objects, UX That Moves With You, Triggering Canvas Events from Raycasts, Creating Virtual Controls That Mimic Real World Controls.			8 hrs

References

- 1. Virtual Reality Technology, Gregory C. Burdea & Philippe Coiffet, John, 2nd Edition, 2013 Wiley & Sons, Inc., ISBN: 978-0-471-36089-6
- 2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, 2nd Edition, 2006. ISBN: 978-0-471-36089-6
- 3. Greengard, Samuel. Virtual reality. Mit Press, 2019.

Lab Experiments

SI. No	Experiments	No of Slots
		(2 hrs/per week)
1	(AR) app development in Unity entailsthat overlay digital	1
	elements onto the real world.	
2	Create a 3D object and apply different geometric	1
2	Transformations using Mouse/Keyboard	
3	Create animation for a 3D object (transformation, color,	1
	texture, etc.)	
4	Bouncing ball on multiple 2D/3D platforms	1
5	Develop First Person Controller to a Scene	1
6	Create a 3D Character movement	1
7	Create a menu driven interface for adding and removing	1
	objects from a Scene	
8	Build a cubic room, whose sides are made out of six planes.	1
	The room should be 15x15x15 Unity units. At the center of	

	the roof of the room, place a point source of light. This light	
	should change color by pressing the Tab key.	
9	Course activity	4

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Progr	am: Bachelor of Engine	ering		
Cours	se Title: Information Re	trieval	Course Code: 25ECS	SE330
L-T-P:	2-0-1	Credits: 03	Contact Hours: 2hrs	/week
ISA M	larks: 67	ESA Marks: 33	Total Marks: 100	
Teach	ing Hours: 30	Practical: 28hrs	Exam Duration: 2hr	S
		Unit I	-	
1		Nature of unstructured and solean queries, Index Construction		5 hrs
2	Basic IR Models: Vector space, Term Frequency / Inverted Document Frequency (TF-IDF), Probabilistic, Vector space scoring.			5 hrs
3	Query Operations & Performance Evaluation: Relevance feedback, Query expansion, Unranked and ranked retrieval evaluation, test collections,			5 hrs
Unit II				
4	4 Text Categorization: Introduction to text classification, Rocchio, and Nearest Neighbor, Spam, Sentiment, and Online Advertising.			5 hrs
5	Text Clustering: Clustering Techniques, Analysis & Validation, Application Scenarios for Search Results and Database Clustering.			5 hrs
6	Search Engine and Link Analysis: Web search basics, Web crawling and			5 hrs

Text Books

- 1. Manning, Raghavan and Schutze, Introduction to Information Retrieval, Cambridge University Press, 2009.
- 2. B. Croft, D. Metzier and T. Strohman, "Search Engines Information Retrieval in Practice", Addison Wesley, 2009.

Reference Books:

- 1. D. Grossman and O. Frieder, "Information Retrieval: Algorithms and Heuristics", Springer, 2004.
- 2. Ceri. S Bozzon, A; Brambilla, M; Della Valle, E; Fraternali, ;Quarteroni, S "Web Information Retrieval", 2013.

Laboratory Plan

Expt. No.	Experiments	No. of Slots
1	Introduction to IR : TF, IDF, Score calculation	2
2	Probabilistic, Vector space scoring	2
3	Date Preprocessing and Query Operations	2
4	Implement your own crawler	2
5	Text Classification Techniques	2
6	Language modeling	2
7	Search Operations	2

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Prog	ram: Bachelor of Engineeri	ing			
Cour	Course Title: Agentic Al		Course Code: 25ECSE331		
L-T-P	P: 2-0-1	Credits: 3	Contact Hrs:		
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100		
Teac	hing Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hrs		
		Unit –I			
1	Basics of Agentic AI: Intro	duction, Flipped Interac	ction Pattern,	08 hrs	
1	The Agent Loop, Adding S	tructure to AI Agent Ou	tputs	U8 nrs	
	Al Agents, Tools, Action	ons and Language: (GAIL - Goals, Actions,		
2	Information, Language, Giving Agents Tools, Tool Descriptions and		07 hrs		
	Naming, Tool Results and	Agent Feedback			
3	GAME: A conceptual Fran	meworks for AI Agents	Overview of the GAME	07 hrs	
3	Framework, Simulating Ag	gents in ChatGPT		07 1113	
		Unit –II			
4	Al Tool Management: K	eeping Agent Tools U	o to Date with Python	04hrs	
4	Decorators, Tool Organization for Agents, Refactoring Our README Agent				
	Rethinking How softwar	e is built in the age o	of Al Agents: Build the		
5	Impossible with AI Agents, Rethinking How We Teach Innovation,		04hrs		
3	Hallucination is a New F	orm of Computing, Ne	ew Ways to Access and		
	Extract Information				

Text Books:

1. Agentic AI - Maria Johnsen - Google Books (2025)

https://books.google.co.in/books?id=bMg7EQAAQBAJ&printsec=frontcover&source=gbsgesummaryr&cad=0#v=onepage&q&f=false

2. Agentic Artificial Intelligence: Harnessing AI Agents to Reinvent Business, Work and Life by Pascal Bornet (2025)

https://www.amazon.com/Agentic-Artificial-Intelligence-Harnessing-Reinventebook/dp/B0F1DS36YC

References:

1. https://www.coursera.org/learn/ai-agents-python

Agentic AI Lab Plan:

Experiment	Brief description about the experiment	Number
No.		of slots
1	Design and implement Programmatic Prompting and	2
	Customer Service Agent	
2	Simulate agents by role-playing different GAME elements	4
	via prompting.	

3	Simulate collaboration between multiple agents using	4
	the GAME framework.	
4	Evaluate and improve agent simulations.	2
5	Fine-Tuning for Specific Tasks	2
	Ethical Considerations and Bias Detection	
	Real-World Application Development	
	Performance Optimization and Scaling	

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Pro	Program: Bachelor of Engineering			
Cou	Course Title: Reinforcement Learning Course Code: 25ECSE3		32	
L-T-P: 2-0-1 Credits: 3		Credits: 3	Contact Hrs: 4hrs/week	
ISA	Marks: 67	ESA Marks: 33	Total Marks: 100	
Tea	ching Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to Reinforce	ment Learning:		
	What is RL, difference from	n supervised/unsupervis	sed learning, Real-world	
1	applications: robotics,	gaming, recommenda	tion systems, Agent-	04 hrs
	Environment Interface, R	ewards, States, Actions	, and Returns, Markov	
	Decision Processes (MDPs	<u> </u>		
	Dynamic Programming &			
2	Value Functions: State-value and Action-value, Bellman Equations			06 hrs
	(expectation and optim		n, Improvement, and	
	Iteration, Value Iteration & Policy Iteration			
	Model-Free Prediction and Control: Monte Carlo Methods, Temporal			
3	3 Difference (TD) Learning, SARSA vs Q-Learning, Exploration vs Exploitation			05 hrs
	(ε-greedy, softmax)			
	Unit –II Policy Optimization & Deep RL: Policy Gradient Theorem, REINFORCE			
4	· •	•	·	07 hrs
4	Algorithm, Actor-Critic me			07 1115
	Stability tricks: Experience Replay, Target Networks			
	Advanced Concepts & Applications: Exploration Strategies (UCB, entropy			
5	regularization), Multi-agent RL (brief intro). Hierarchical RL & Options, Introduction to RL in Vision / NLP, Reinforcement Learning from Human			08 hrs
	Feedback (RLHF), Current trends and open research problems			
Text	Text Books:			
	1. "Reinforcement Learning: An Introduction", Richard S. Sutton and Andrew G.			
	Barto, 2nd Edition			
2.	"Probability, Statistics, and Random Processes for Electrical Engineering", 3rd			rd
1				

Reference: IIT Kharagpur

Edition, Alberto Leon-Garcia

3. "Machine Learning: A Probabilistic Perspective", Kevin P. Murphy

Lab Plan:

Experiment	Brief description about the experiment	Number
No.		of slots
1	Implement a simple bandit problem in Python	2
2	Implement value and policy iteration on Gridworld	2
3	Build an agent using SARSA/Q-learning	2
4	Implement REINFORCE for CartPole	2
5	DQN for Atari game or simple vision task	2
6	Fine-Tuning for Specific Tasks	4
	Ethical Considerations and Bias Detection	
	Real-World Application Development	
	Performance Optimization and Scaling	

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Prog	Program: Bachelor of Engineering			
Cour	Course Title: Human Computer Interaction Course Code: 25ECSE33		33	
L-T-P	P: 2-0-1	2-0-1 Credits: 3 Contact Hrs: 4hrs/week		(
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Practical hrs: 28	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to HCI: Defin	nition and importance o	of HCI, Evolution of HCI,	
1	Human-centered design, (Concept of usability - def	finition and elaboration,	06 hrs
	HCI and software enginee	ring, Prototyping technic	ques.	
Model-based Design and evaluation: Basic idea, introduction to different				
types of models, GOMS family of models (KLM and CMN-GOMS), Fitts' law			06 hrs	
and Hick-Hyman's law,				
Guidelines in HCI: Shneiderman's eight golden rules, Norman's seven				
3	principles, Norman's model of interaction, Nielsen's ten heuristics with			08 hrs
	example of its use, Heuristic evaluation, Contextual inquiry, Cognitive			00 1113
	walkthrough, Empirical research methods in HCI.			
Unit –II				
4	Dialog Design: Introduction to formalism in dialog design, design using			05 hrs
	FSM (finite state machines), State charts and Petri Nets in dialog design.			05 1113
5	Cognitive architecture: Introduction to CA, CA types, relevance of CA in IS			05 hrs
	design, Model Human Pro	cessor (MHP).		כווו כט

Text Book

- 1. Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Beyond Human-Computer Interaction (6th Edition), Wiley, 2023
- 2. C. R. Becker, Learn Human-Computer Interaction: Solve Human Problems and Focus on Rapid Prototyping and Validating Solutions through User Testing. Birmingham: PACKT Publishing Limited, 2020.

References:

- 1. Qi, X., & Yu, J. Participatory Design in Human-Computer Interaction: Cases, Characteristics, and Lessons. In CHI Conference on Human Factors in Computing Systems (CHI '25), April 26–May 01, 2025
- 2. Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction (6th Edition), Pearson, 2016
- 3. Bhattacharya, S., & Yammiyavar, P. G. (n.d.). *Human-Computer Interaction* [Online course]. NPTEL. https://archive.nptel.ac.in/courses/106/103/106103115/
- 4. Stanford University. (n.d.). *Human-Computer Interaction* [Online course]. Coursera. https://www.coursera.org/learn/human-computer-interaction

Lab Experiments	
Lab 1: Usability Evaluation	Objective: Understand the concept of usability.
of a Simple Web	Activity: Conduct a usability test on a website using Nielsen's
Application	heuristics.
	Outcome : Identify usability issues and write a usability report.
Lab 2: Prototyping	Objective : Create low- and high-fidelity prototypes.
Techniques	Activity: Design a basic user interface for a mobile app.
,	Outcome: Understand the iterative nature of prototyping in HCI.
Lab 3: Modeling with GOMS (KLM & CMN- GOMS)	Objective: Apply GOMS models to predict user behavior. Activity: Model a common task (e.g., sending an email) using KLM and CMN-GOMS.
	Outcome: Analyze cognitive load and task efficiency.
Lab 4: Fitts' Law and Hick- Hyman's Law Experiment	Objective: Explore laws of human motor and decision-making behavior. Activity: Create a simple UI to test button sizes (Fitts') and menu choices (Hick-Hyman). Outcome: Record reaction time and decision-making speed.
Lab 5: Heuristic Evaluation	Objective: Apply Nielsen's 10 heuristics to a system (e.g., ATM UI or online form). Activity: Identify violations and categorize by severity. Outcome: Document a heuristic evaluation report.
Lab 6: Modeling with Model Human Processor (MHP)	Objective: Apply MHP for a real task. Activity: Choose a daily computer task (e.g., searching in Google), break it down into perceptual, cognitive, and motor actions. Outcome: Time and analyze task steps using MHP components.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Prog	ram: Bachelor of Engineerin	g			
Cour	se Title: Multimedia Networ	·ks	Course Code:21ECSE31	l1	
L-T-P): 3-0-0	Credits: 3	Contact Hrs: 3hrs/wee	k	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 40		Exam Duration: 3 hrs		
		Unit –I			
	Introduction to Multi me	dia: Media and Data	stream: Perception Media,		
1	Representation Media, Pre	sentation Media, Stor	age Media; Key properties of	4 hrs	
-	Multimedia, Characterizir	ng data streams and	d Continuous Media Data	7 1113	
	Streams.				
	Graphics and Image Data	a representation: Gr	aphics / Image data types,		
	popular file formats, color	science, color model	s in images, color models in		
2	video, Image analysis: Colo	r, Texture identificatio	n, Edge detection using sobel	6 hrs	
_	operators, canny edge	detection method,	Image segmentation: pixel	0 1113	
	oriented, edge oriented, Re	egion oriented, Image	recognition. Image synthesis,		
	Radon transforms.				
	Fundamental concepts of Video and Audio: Types of video signal, digital				
3				6 hrs	
	audio				
		Unit –II			
	Image compression tech	niques: Lossless cor	npression algorithms: Run-		
	Length Coding, Variable-I	Length Coding (VLC),	, Shannon–Fano Algorithm,		
	Huffman Coding, Adaptive	Huffman Coding, Arith	nmetic Coding, Lossless JPEG,		
4	Lossy compression algori	thms: Distortion Me	asures, The Rate-Distortion	6 hrs	
•	Theory, Quantization, Un	iform Scalar Quanti	zation, Non-uniform Scalar	0	
	Quantization, Vector Qu	antization, Transform	n Coding, Discrete Cosine		
	, , ,	ction, Continuous W	Vavelet Transform, Discrete		
	Wavelet Transform				
5	•	•		6 hrs	
	• •	Credits: 3 Credits: 3 ESA Marks: 50 Total Marks: 100 Exam Duration: 3 hr Unit –I media: Media and Data stream: Perception Media, Presentation Media, Storage Media; Key properties derizing data streams and Continuous Media Data Data representation: Graphics / Image data type color science, color models in images, color models in Color, Texture identification, Edge detection using sobage detection method, Image segmentation: pixely d, Region oriented, Image recognition. Image synthesists of Video and Audio: Types of video signal, digital audio, MIDI standard, Quantization and transmission of the color of			
6	-		•	4 hrs	
	methods of controlling ani		mission of animation, VRML		
	_				
7	Optical storage media: Bas	sic technology, video d	disc, CDDA, CDROM, CDR/W,	4 hrs	
		nd complex features:	text recognition, similarity		

Text Books:

- 1. Ze-Nian Li & Drew, Jiangchuan Liu, "Fundamentals of Multimedia", Second Edition, Springer, 2014.
- 2. Ralf Steinmetz, Klara Narstedt, "Multimedia Fundamentals: Vol 1-Media Coding and Content Processing", 2nd Edition, Pearson Education / PHI, 2003.

Reference Books:

1. James E Shuman, "Multimedia in Action" 2nd Indian reprint 2008, Cengage learning.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
'''	Q.No8	8	Solve Ally I

Progr	am: Bachelor of E	ngineering		
Cours	e Title: Cyber Sec	urity	Course Code: 25ECSE32	<u>.</u> 5
L-T-P:	3-0-0	Credits: 03	Contact Hours: 3hrs/we	eek
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hours: 40	Practical Hrs:	Exam Duration: 3hrs	
		Unit - I		
	Introduction to 0	Cyber Security: Overview of Cyb	ersecurity, Importance and	
1	Goals of Cybers	security, Cybersecurity Threat	Landscape, Cybersecurity	8 hrs
	Fundamentals, Overview of Domain-specific Security, Threat Intelligence		ecurity, Threat Intelligence	0 1113
	and Incident Res	ponse.		
	Cyber-crimes ar	nd Cyber Laws: Classification	of cyber-crimes, Common	
	cyber-crimes – t	argeting computers, mobiles, o	rimes against women and	
2	children, financi	al frauds, social engineering, r	nalware and ransomware,	
	zero-day and zer	o-click attacks, cybercriminals' r	nodus operandi, reporting,	7 hrs
	remedial measu	res, legal perspective, IT Act 200	00 and amendments, cyber	
	offences, organiz	rations dealing with cybercrime	and cybersecurity in India,	
	case studies.	Unit - II		
	Notwork and W		tacting critical wab accets	
	Network and Web Security : Identifying and protecting critical web assets, cookies, wireless network vulnerabilities, Application software and data			
3		OWASP top 10 threats, Mitigat		0.1
	'	y, Multilevel Security Models		8 hrs
	Detection System		, Thewans and intrusion	
	•	ons: Security Operations Centre	(SOC) Fundamentals Koy	
	· ·	Responsibilities, SOC Compo	` '	
		perthreats and the impact of a B	` ' '	
4		a Baseline, Fundamental Securi		7 hrs
		Standards, Guidelines, and Fra		
	Risk & Business (
	Unit - III			
	Development of	f SOC: SOC Maturity Model, K	ey SOC Functions: Threat	
5	Detection, Incide	ent Response, Forensics, Planr	ning and Designing a SOC	ГЬис
	Facility, Network	Considerations for SOC, Disa	ster Recovery & Business	5 hrs
	Continuity in SO	C		
	Security Inforn	nation and Event Managen	nent (SIEM): Key SIEM	
6	Components, Ir	ntroduction to SIEM solution	s, Key Features, SIEM	
0	Architecture, Log	g collection methods, Incident D	etection in SIEM: Detecting	5 hrs
		ng, Insider Threats, Automated	I Incident Response with	
	SIEM and SOAR.			

References

- 1. Cybersecurity Essentials by Charles J. Brooks, Christopher Grow, Philip Craig, and Donald Short was published on October 5, 2018.
- 2. Principles of Information Security by Michael E. Whitman and Herbert J. Mattord (7th edition) was published on June 27, 2021.
- 3. Computer Security: Principles and Practice by William Stallings and Lawrie Brown (4th edition, Global Edition) was published on June 21, 2018.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1	15	30
ISA-2	15	30
Activity	20	20
Total		50

Program: Bachelor of Engineering					
Course Title: Software Defined Networks Course Code: 25ECSE334				ı	
L-T-P): 2-0-1	Credits: 3	Contact Hrs: 4hrs/week	k	
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100		
Teac	hing Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hrs		
		Unit – I			
1	Introduction: Evolving Internet Traffic, The SDN	network requirements, approach, Data plane fund	• •	05 hrs	
2	OpenFlow: OpenFlow logical network device, OpenFlow protocol, OpenFlow messages, OpenFlow events.		05 hrs		
3	Control Plane: SDN Control plane architecture, POX architecture, OpenDaylight architecture, REST, Mininet based examples,		05 hrs		
Unit-II					
4	4 Programming SDNs: Components in POX, POX APIs, Registering Components, The Event System: Handling Events, Creating Your Own Event Types, Raising Events, Binding to Components, Events.		06 hrs		
5	5 Software Application plane: SDN Application Plane Architecture, Traffic Engineering, Measurement and Monitoring.		04hrs		
6		ork Virtualization: A Simp	w VLAN Support, Virtual blified Example, Network	05 hrs	

Laboratory Plan: Experiments

Lab Slot	Experiment	Correlation to
		Unitization
1.	Introduction to Mininet.	
2.	Setting up the Environment and Implementation of	
	Controllers.	UNIT-I
3.	Custom Topology: POX, ODL, Floodlight.	
4.	Legacy Network: BGP Example.	
5.	Early efforts of SDN: MPLS Example.	
6.	Configuration of SDN Networks.	UNIT-II
7.	Configuring VXLAN.	
8.	Open flow Protocol Management.	
9.	Interaction between Legacy Networks and SDN Networks.	
10.	Configuring VPLS.	UNIT-II
11.	Network function virtualization	OINI I-II

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Prog	gram: Bachelor of Eng	gineering		
Cou	rse Title: Blockchain	and Distributed Ledgers	Course Code: 24ECSE32	24
L-T-F	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction: Overview of blockchain, Digital Money to Distributed Ledgers,			
	Design Primitives:	Protocols, Security, Consensus	, Types of blockchain,	
1	blockchain platfor	ms, Blockchain Architecture, I	Blockchain Use Cases:	05 hrs
	Finance, E-Gover	nance, Supply chain man	agement, Healthcare	
	management and c	yber security.		
	Cryptography Basi	cs: Introduction to cryptograp	hy, Public key crypto:	
2	Introduction, RSA,	Public key infrastructure, Hash F	Functions: Properties of	06 hrs
	Hash Functions, SH	A, Digital signature Schemes, Me	erkle trees.	
	Consensus Mechanisms and Mining -Permissionless: Consensus in			
3	Distributed Systems, Consensus mechanisms in Permission less blockchain:			04 hrs
•	Proof of Work, Proof of Stake (POS), Proof of Activity, Delegated POS, Proof			041113
	of Elapsed Time.			
		Unit –II		
4	Consensus Mecha	nisms and Mining – Permiss	ioned: RAFT, Practical	04 hrs
4	Byzantine Fault Tole	erance (PBFT), Scalability of cons	ensus algorithms.	04 nrs
	Ethereum and Sm	art Contracts: Ethereum transa	ctions, accounts, smart	
	contracts, smart c	ontract development, Solidity I	basics, basic contracts,	
5	distributed storage and IPFS, Ethereum scaling, Applications of Ethereum			06 hrs
	Smart contracts: Tokens and Token Standards, Fungible and Non-Fungible			
	Tokens, crowd funding			
	Enterprise Blocko	hain Platforms: Hyperledger	Fabric: Introduction,	
e	Architecture, Ident	ity, Membership and Peer Man	agement, Chain codes.	05 hrs
6	Corda: Principal Fea	tures, Architecture, CorDapp. Co	nsensus Mechanisms in	טס וווצ
	Hyperledger Fabric	and Corda.		
T	Books:			

Text Books:

- 1. Imran Bashir "Mastering Blockchain", 3st Edition, PacktMedia, 2020.
- 2. William Stallings "Cryptography and network security principles and practice", 7th edition Global edition.

Reference Books:

- 1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.
- 2. Arshdeep Bhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", 1st Edition, VPT, January 31, 2017.

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage in (%)	
ISA-1 (Theory)	30	22	
ISA-2 (Theory)	30	33	
Laboratory	60	34	
Assessment	60	54	
	Total	67	

ESA Scheme

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

List of Exercises

Expt./ No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Overview and Demonstration of Ethereum smart contracts	1
2.	Solidity programming- Data types Primitive Data Types- Integer, Floating Point, Character, Boolean Composite/Derived Data Types- String, Array, Structure (struct).	
3.	Solidity programming- control structures and functions	1
4.	Remix with Ganache and Meta mask	1
5.	Deploying contract using external blockchain using Remix, ganache and Metamask (Evaluation 1)	1
6.	Demonstration on block chain use cases (Regarding Openended Experiment)	1
7.	Creating smart contract on RSA and D_H, SHA-512, Digital signature. Structured Enquire: Cryptography	1
8.	Creating custom Ethereum blockchain using Geth.	1
9.	Connecting to Geth node using Web3	1
10.	Structured Enquire: Case study (specified in chapter 1) implementation using Geth (Evaluation 2)	1
11.	Create distributed storage using IPFS.	1
12.	Connect IPFS to Ethereum or Hyperledger Fabric (Evaluation 3)	1
13.	Open ended Experiment: Problem statement, Backend Design and Front end design	1
14.	Open ended Experiment: Implementation and Results (Evaluation 4)	1

Program: Bachelor of Engineering				
Cou	Course Title: Security Operations Course Code: 24ECSE321			
L-T-F	-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/week			
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
2	Fundamentals, Key Processes, Technolo Security and Establ Industry Threat Vulnerabilities, Risk Development of S Detection, Incident Facility, Network (ecurity Operations: Security SOC Roles and Responsibilities ogy), Cyberthreats and the important ishing a Baseline, Fundamen Models, Standards, Guide & Business Challenges, GOC: SOC Maturity Model, to Response, Forensics, Plan Considerations for SOC, Discecurity Considerations, Guide	s, SOC Components (People, pact of a Breach, Investing in tal Security Capabilities and elines, and Frameworks, Key SOC Functions: Threat ning and Designing a SOC aster Recovery & Business	07 hrs 08 hrs
Unit –II				
	Security Information		FM): Key SIFM Components	
3	Security Information and Event Management (SIEM): Key SIEM Components, Introduction to SIEM solutions, Overview and Key Features, SIEM Architecture, Log collection methods, Security Event Correlation and Rule Writing.			07 hrs
4	Incident Detection and Response: Incident Detection in SIEM: Detecting Malware, Phishing, Insider Threats, Detecting Lateral Movement (MITRE ATT&CK Framework), Incident Response: Automated Incident Response with SIEM and SOAR, Generating and Managing SIEM Alerts Text Books:			08 hrs

Text Books:

1. J. Muniz, A. Lakhani, O. Santos, and M. Frost, The Modern Security Operations Center: The People, Process, and Technology for Operating SOC Services, 1st ed. O'Reilly Media, 2021

Reference Books:

- 1. R. MacDougall and R. Lain, The Security Operations Handbook: Managing a SOC and Detecting Threats, Packt Publishing, 2021.
- 2. E. Al-Shaer, Automated Security Operations: Threat Hunting, Detection, and Response at Scale, Pearson, 2020.

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage in (%)
ISA-1 (Theory)	30	22
ISA-2 (Theory)	30	33
Laboratory	60	34
Assessment	60	54
	Total	67

ESA Scheme

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

Lab Experiments

S. No	Experiments	No of Lab Slots
1	Installing and configuring WAZUH.	01
2	Configure log sources and forwarding logs to SIEM component.	01
3	Log collection methods and analysis.	01
4	Malware detection.	01
5	Intrusion detection.	01
6	Phishing attack analysis.	01
7	Insider threat monitoring.	03
8	Network attack detection.	02
9	SIEM alert management.	03

Program: Bachelor of Engineering				
Course Title: Edge Computing Course Code: 24ECSE323				
L-T-P	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/week			
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction: Defir	nition and key concepts, Diffe	erence between edge, fog and	
1	cloud computing In	nportance and benefits of e	dge computing, Case studies	07 hrs
	and real-world app	lications, Edge computing ar	chitecture.	
	Edge Computing T	Technologies: Edge hardwa	re and devices: IoT devices,	
	gateways, edge servers, Sensors and actuators, edge hardware platforms,			
2	Software for Edge Computing: operating systems and middleware, edge			08 hrs
2	computing platforms and frameworks, development tools and SDKs. Wireless			US IIIS
	technologies for edge: for Wi-Fi, Zigbee, LoRa, 5G, mmWave, LiFi.			
	Communication pro	otocols: MQTT, CoAP, AMQP,	BLE	
		Unit –II		
	Edge Cloud: Introd	luction to Edge Data Center	, use cases and applications,	
3	Lightweight edge clouds and its services, Edge cloud architectures using			07 hrs
	Kubernetes, Edge Networking: 5G Architecture, SDN, NFV, SFC and AI.			
	Mobile Edge Cor	mputing (MEC): Architect	ure, computational model,	
4	offloading policy, Integration of MEC into 5G/6G, Case study, Applications and			08 hrs
4	Challenges, simulation tools, MEC for industrial IoT, Edge intelligence at		UO IIIS	
	device, edge and core layers using ML/FL.			

Text Books:

- 1. Yan Zhang, "Mobile Edge Computing", 1st Edition, Springer, 2021.
- 2. Buyya R., Srirama S.N., "Fog and Edge Computing", Wiley, 2019.

Reference Books:

- 1. Sabella D., Reznik A., Frazao R., "Multi-access Edge Computing in Action", 1st edition, 2019
- 2. Al-Turjman F. (ed.): "Edge Computing: from hype to reality", Springer, 2019.

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage in (%)
ISA-1 (Theory)	30	22
ISA-2 (Theory)	30	33
Laboratory	60	34
Assessment	60	34
	Total	67

ESA Scheme

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

Lab Experiments

S. No	Experiments	No of Lab Slots
1	Kubernetes Setup – Single node	01
2	KubeEdge Setup	01
3	LF Edge	01
4	Edge Cloud- Multi-node	01
5	Edge Application Deployment on KubeEdge- IoT	01
6	Edge Application Deployment on KubeEdge- Video Streaming	01
7	MEC- Edge device, Edge cloud and private 5G integration	03
8	Open Ended Activity	04

	gram: Bachelor of Eng	<u> </u>	T	
Cou	Course Title: Web Security Course Code: 25ECSE335			
L-T-F	-T-P:2-0-1 Credits: 3 Contact Hrs: 4 hrs/week			
ISA I	SA Marks: 67 ESA Marks: 33 Total Marks: 100			
Teac	thing Hrs: 30	Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to W	eb Security: Security Goals	for Web Applications, The	
1	fundamentals and	state-of-the-art in web secu	rity. Common Threats and	04 hrs
	Vulnerabilities, Atta	icks and countermeasures		
	Authentication and	d Session Management : Use	r Authentication Methods :	
2	Passwords, OTPs, 0	OAuth, Biometrics Session N	Management and Attacks :	05 hrs
2	Session Hijacking,	Fixation Secure Login I	Mechanisms, Multi-Factor	US HIS
	Authentication (MFA)			
	Web Application Vulnerabilities: Injection Attacks: SQL Injection, Command			
	Injection, Cross-Site Scripting (XSS): Stored, Reflected, DOM-based, Cross-			
3	Site Request Forgery (CSRF)			06 hrs
	File Upload Vulnerabilities, Broken Access Control, Insecure Direct Object			
	References (IDOR)			
		Unit –II		
	Web Server and H	Hosting Security: Web Serve	er Hardening , HTTPS and	
4	SSL/TLS Configuration, Content Security Policy (CSP), Web Application			05 hrs
	Firewalls (WAF)			
5	Secure APIs and Web Services: REST and SOAP Security, API Authentication		04 hrs	
3	:JWT, OAuth2, Limiting and Throttling, Common API Vulnerabilities			04 1115
	Secure Web Develo	ppment Practices: Input Valid	ation and Output Encoding,	
6	Error Handling and Logging, Secure Coding Principles: Least Privilege, Fail			06 hrs
	Secure, Framework-Specific Security: Django, Node.js, React			
Rofo	rence Books			

Reference Books:

- 1. Dafydd Stuttard, Marcus Pinto, The Web Application Hacker's Handbook, 2nd Edition Wiley, ISBN: 978-1118026472, 2011.
- 2. Malcolm McDonald Web Security for Developers, No Starch Press, 1st Edition , ISBN: 978-1718501041, 2020
- 3. Andrew Hoffman, Web Application Security: Exploitation and Countermeasures for Java, .NET, and PHP, 1st Edition (2020) O'Reilly Media, ISBN: 978-149205311

Evaluation Scheme Scheme for In Semester Assessment (ISA)

Assessment	Conducted for marks	Weightage in (%)
ISA-1 (Theory)	30	22
ISA-2 (Theory)	30	33
Laboratory	60	34
Assessment	60	34
	Total	67

Scheme for End Semester Assessment (ESA)

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

Lab Experiments

S.No	Experiments	No of Lab Slots
1	Introduction to Web security Tools: XAMPP/LAMP stack, OWASP Juice Shop, DVWA	02
2	Implementing and Bypassing Login Authentication	01
3	Session Hijacking using Cookies	01
4	Web Vulnerabilities	02
5	Input Validation and Output Encoding	02
6	Implement HTTPS Using Self-Signed Certificates	02
7	Testing a REST API for Injections and Misconfigurations	02
8	Implementing Content Security Policy (CSP)	02

	m: Bachelor of Enginee	•		
Course	Course Title: Computational Medicine Course Code: 24ECS			E319
L-T-P:	T-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/v		eek	
ISA Ma	arks: 67	ESA Marks: 33	Total Marks: 100	
Teachi	ing Hrs: 30	Tutorial/Practical: 28 hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to Cell O	Organization: Cell Theory, Prokar	yotic and Eukaryotic	
1	Cells, Organelles, Cell N	Membrane, Cell Cycle, Tissue, Or	gans, Organ Systems,	5 hrs
	Homeostasis			
2	Systems Biology: Syste	ems Biology, Modelling Biologic	al Systems, Network	5 hrs
2	Biology, Omics Technologies, Systems Biology Applications.			
3	Biological Networks: Protein-Protein Interaction Networks (PPINs), Gene			5 hrs
Regulatory Networks (GRNs), Metabolic N		GRNs), Metabolic Networks, Me	etabolic Networks	J 1113
		Unit –II		
4	Molecular Interaction	ons: Protein-Protein Interac	tions, Protein-DNA	5 hrs
7	Interactions, Protein-L	igand Interactions, Molecular D	ynamics Simulations.	J 1113
	Introduction to modelling health and disease: Principles of Computational			
5	Physiology, Integrating Molecular Networks into Physiological Models,			
	Animal Models and Human Translation			
6	Introduction to Computational Anatomy: Case Studies : Computational			5 hrs
	Anatomy of the Brain and Computational Anatomy of the Heart			J 1113
Text B	ooks: NA			

- 1. Lecture Notes and Handouts
- 2. Some reference papers / Slides/ Videos

Hands-On - Lab Work

- Lab sessions on cell observation (microscopy) and tissue analysis.
- Group projects on modelling biological systems.
- Case studies on diseases related to cellular dysfunction.
- Bioinformatics exercises using publicly available datasets.
- Computational exercises in network analysis using available software tools.
- Case studies of network-based drug discovery and development.
- Data mining and analysis of biological network datasets.
- Integration of network analysis with experimental validation.
- Hands-on experience with computational modelling software.
- Development of simplified models to understand core concepts.
- Analysis of real-world data to parameterize and validate models.
- Collaboration with experimental biologists and clinicians.

- Hands-on experience with medical image processing software.
- Development of image analysis pipelines for specific clinical problems.
- Application of machine learning techniques for image analysis.
- Collaboration with clinicians for data interpretation and clinical validation.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Course Title: The ARM Architecture Coursecode:19ECSE			308		
L-T-P:	2-1-0	Credits: 3	Contact Hrs: 4 hrs/	week	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 30	Tutorial Hrs: 28	Exam Duration: 3 hrs		
		Unit –I			
	ARM Embedded Systems and Processor Fundamentals: The RISC Design				
	Philosophy, The ARM D	esign Philosophy, Embedded	System Hardware,		
1	Embedded System Softw	are, Registers, Current Progra	am Status Register,	06 hr	
	Pipeline, Exceptions, Into	errupts, and the Vector Table	e, Core Extensions,		
	Architecture Revisions, A	RM Processor Families			
	Introduction to the ARM	Instruction Set & Assembly I	Programming: Data		
	Processing Instructions, Branch Instructions, Load-Store Instructions,				
2	Software Interrupt Instruction, Program Status Register Instructions,				
	Loading Constants, ARMv5E Extensions, Conditional Execution, Thumb				
	instruction set.				
		Unit –II			
	Efficient C Programming: Overview of C Compilers and Optimization, Basic				
3	C Data Types, C Looping Structures, Register Allocation, Function Calls,			06 hı	
3	Pointer Aliasing, Structure Arrangement, Bit-fields,			00 111	
	Unaligned Data and Endia	anness, Division.			
	Writing and Optimizing	Writing and Optimizing ARM Assembly Code: Writing Assembly Code,			
4	Profiling and Cycle Counting, Instruction Scheduling, Register Allocation,			06 h	
7	Conditional Execution, I	Looping Constructs, Bit Mar	nipulation, Efficient	: UO IIIS	
	Switches, Handling Unalig	gned Data.			
		Unit –III			
	Introduction to LPC-2148 controller: Input output Ports, Pin select				
5	registers, Input output select registers, direction control and control C			03 hr	
	registers, Introduction to				
6	_	interfacing to peripherals lik	e LED, LCD, Seven	03 hr	
•	segments, Motors, Conve	erters, Keypad.		55 111	

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

- 1. Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2. Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./	Assignments/Experiment	No. of Lab.
Job No.	b No.	
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	02
4	Interface LED and Seven segments to ARM for	02
4	displaying message.	
5	Interface LCD to ARM for displaying message.	02
6	Interface Keypad to read the characters	02
7	Rotate DC and stepper motor for variable speed and	02
,	direction	
8	Interface DAC to ARM controller	02

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Cour	se Title: Embedded Intelli	Course code: 24ECSE30	02	
L-T-P: 1-0-2 Credits: 3		Contact Hrs: 5 hrs/week		
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	eaching Hrs : 15 Practical Hrs: 56 Exam Duration: NA			
1	ML Frameworks lab with the target device: TensorFlow, PyTorch, TF Lite machine learning frameworks & architecture, Model parsing, feature support and flexibility, supported layers, advantages and disadvantages with each of these frameworks, Android NN architecture overview, Full stack compilation and execution on embedded device.			5 hrs
2	Model Development and Optimization: Significance of on device AI, Quantization, pruning, weight sharing, Distillation, Various pre-trained networks and design considerations to choose a particular pre-trained model, Federated Learning, Flexible Inferencing.			5 hrs
3	Android Anatomy: Android Architecture, Linux Kernel, Binder, HAL Native Libraries, Android Runtime, Dalvik Application framework, Applications, IPC.			5 hrs

Text Books

- 1. Linux System Programming, by Robert Love, Copyright © 2007 O'Reilly Media.
- 2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann.
- 3. Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's.
- 4. TensorFlow for Deep Learning, by Bharath Ramsundar, Reza Bosagh Zadeh, O'Reilly Media, Inc.
- 5. Beginning Android, by Wei-Meng Lee, Publisher: Wrox, O'Reilly Media.

Reference Books:

- 1. Deep Learning with PyTorch, Eli Stevens, Luca Antiga, and Thomas Viehmann, Manning Publication.
- 2. Machine Learning with PyTorch and Scikit-Learn, Sebastian Raschka, Yuxi (Hayden) Liu , Vahid Mirjalili, Packt Publishing.

Evaluation Scheme (ISA)

Section	Chapter Numbers	Conducted for marks	Weightage in Marks
ISA - I	1, 2, 3	40	34 Marks
Lab Evaluation	1, 2, 3	60	33 Marks

Evaluation Scheme (ESA)

Section	Chapter Numbers	Conducted for marks	Weightage in Marks
Lab Exam (ESA)	1, 2, 3	40	33 Marks

List of experiments

Expt. No.	Brief description about the experiment	No. of Lab Slots
1.	Comparative analysis and execution of pre-trained neural networks using TensorFlow, PyTorch, and TensorFlow Lite for edge deployment.	1
2.	Design and deployment of lightweight convolutional neural networks for resource-constrained embedded environments.	2
3.	Implementation and performance evaluation of quantization techniques on DNN models for on-device execution.	1
4.	Implementation of structured model pruning with emphasis on parameter compression, retraining methodologies, and accuracy evaluation on embedded platforms.	1
5.	Implementation of knowledge distillation framework focusing on transferring representational capabilities from high-capacity teacher networks to lightweight student models.	2
6.	Development of native android applications for incorporating embedded machine learning models with focus on android runtime, inter-process communication, and user interface integration.	1
7.	Integration of cross-platform PyTorch models into android applications through TorchScript conversion and deployment using the PyTorch mobile framework.	2
8.	Design and development of computationally optimized and quantized deep neural network architectures on heterogeneous android platforms with real-time inference profiling, multi-hardware delegate analysis, and comprehensive evaluation of accuracy-latency-memory trade-offs.	4

Progra	am: Bachelor of Engineerin	g		
Course Title: Robotic Process Automation Design & Course Code: 25ECS			F301	
Development			Course code. 252cs	
L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/v		eek		
ISA M	arks: 67	ESA Marks: 33	Total Marks: 100	
Teach	ing Hrs: 30	Practical Hrs: 28	Exam Duration: 2 hr	S
	T	Unit –I		
	Programming Basics & Recap –			
		asics - Understanding the ap		
1	·	Email Clients Data Structu		5 hrs
_		Processes - Software Design	. •	
		nentals - XML - Control struc	tures and functions -	
	XML - HTML - CSS - Varial			
	-	cs - History of Automation - \		
		& Flowcharts - Programming		
		utomated - Types of Bots - V		
2	be automated - RPA Advanced Concepts - Standardization of processes -			5 hrs
	RPA Developemt methodologies - Difference from SDLC - Robotic control			
	flow architecture - RPA business case - RPA Team - Proccess Design			
	Document/Solution Design Document - Industries best suited for RPA -			
	Risks & Challenges with RPA - RPA and emerging ecosystem.			
	Rpa Introduction & Basics - Introduction to RPA Tool - The User Interface - Variables - Managing Variables - Naming Best Practices - The Variables Panel			
		- Text Variables - True or False		
	Variables - Array Variables - Date and Time Variables - Data Table Variables Managing Arguments - Naming Post Practices - The Arguments Panel			
	- Managing Arguments - Naming Best Practices - The Arguments Panel -			
3	Using Arguments - About Imported Namespaces - Importing New Namespaces- Control Flow - Control Flow Introduction - If Else Statements			5 hrs
	·	ol Flow - Sequences - Flowch		3 1113
	•	ties - The Assign Activity - The		
		Activity - The Switch Activity	,	
	•	The Break Activity - Data	•	
	•	n - Scalar variables, collection	·	
	Manipulation - Data Manipulation - Gathering and Assembling Data			
	Unit –II			
	Advanced Automation	Concepts And Techniques-	1 – Recording and	
_		- Recording Introduction -	_	
4	Recording - Web Record	ing - Input/Output Methods	- Screen Scraping -	5 hrs
	Data Scraping - Scraping	g advanced techniques - Se	lectors - Selectors -	

	Defining and Assessing Selectors - Customization - Debugging - Dynamic	
	Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix	
	Advanced Automation Concepts And Techniques-2 - Introduction to Image	
	& Text Automation - Image based automation - Keyboard based automation	
	- Information Retrieval - Advanced Citrix Automation challenges - Best	
5	Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF -	5 hrs
	Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel	
	- Extracting Data from PDF - Extracting a single piece of data - Anchors -	
	Using anchors in PDF.	
	Email Automation & Exceptional Handling — Email Automation - Email	
6	Automation - Incoming Email automation - Sending Email automation -	5 hrs
6	Debugging and Exception Handling - Debugging Tools - Strategies for solving	2 1112
	issues - Catching errors.	

1. Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt Publishing Release Date: March 2018 ISBN: 9781788470940

Reference Books:

- 1. Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation.
- 2. Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant
- 3. Srikanth Merianda, Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation
- 4. https://www.uipath.com/rpa/robotic-process-automation

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

List of experiments

Lab Experiments:

Expt./Jo b No.	Brief description about the experiment/job	No. of tutorial Slots per batch (estimate)	Marks
1	Demo on UiPath Studio	02	NA
2	UiPath Studio practice session	02	NA
3	Bot Building:	02	10
	IMDB Movie Rating		
4	Automating UI input and	02	10
	output actions		
5	Bot Building:	02	10
	Amazon Data Scraping		
6	PDF Automation	02	10
7	E-mail Automation	02	10
	Exception Handling		

Progra	ım: Bachelor of Engineerin	g		
Course	e Title: Parallel Computing		Course Code: 17ECSE	307
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 03 hrs/w	/eek
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teachi	Teaching Hrs: 40 Exam Duration: 03 hr		S	
		Unit –I	- 1	
Introduction to Parallel Computing & Parallel Programming Platforms:				
	Motivating Parallelism, S	Scope of Parallel Computi	ng, Implicit Parallelism:	
1	Trends in Microprocesso	or Architectures, Limitatio	ons of Memory System	8 hrs
1	Performance, Dichotom	y of Parallel Computir	ng Platforms, Physical	8 ms
	Organization of Paralle	l Platforms, Communica	ition Costs in Parallel	
	Machines.			
	Principles of Parallel A	lgorithm Design: Prelim	inaries, Decomposition	
2	Techniques, Characterist	ics of Tasks and Interaction	ns, Mapping Techniques	8 hrs
2	for Load Balancing, Methods for Containing Interaction Overheads, Parallel			8 ms
Algorithm Models.				
		Unit –II		
	Analytical Modeling of Parallel Programs: Sources of Overhead in Parallel			
	Programs, Performance metrics for parallel systems, The effect of			
3	Granularity on performance, Scalability of Parallel Systems, Minimum			8 hrs
	execution time and min	imum cost optimal exec	ution time, Asymptotic	
	analysis of Parallel programs, Other Scalability Metrics.			
	Programming Using the I	Message Passing Paradign	n: Principles of Message	
4	– Passing Programming, 1	he Building Blocks, and M	PI: The Message passing	8 hrs
•	Interface, Overlapping Communication with Computation, Collective			0 1113
	Communication and Com	putation Operations, Gro	ups & Communicators.	
	,	Unit –III		
	Pthreads and Synchro	nization: Thread Basics		
5	Synchronization Primit	,	ntrolling Thread and	4 hrs
	•		cellation, Composite	
	Synchronization Constru			
		gramming model, Specif	, •	
6	·	ts in opn MP, Data handlir	• • •	4 hrs
	-	ment variables in OpenM	P, Explicit Thread versus	
	OpenMP based program	ming.		

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

Reference Books:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
111	Q.No7	5	Solve Any 1
III	Q.No8	5	Solve Ally 1

Progra	am: Bachelor of Engineerin	g		
Course Title: Quantum Computing Fundamentals Course Code: 17ECSE3			306	
L-T-P: 3-0-0 Credits: 3		Credits: 3	Contact Hrs: 3hrs/we	eek
ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100		
Teach	ing Hrs: 40		Exam Duration: 3hrs	
		Unit -I		
	Introduction and Backgro	ound: Overview, Computers a	nd the Strong Church–	
1	Turing Thesis, The Circ	cuit Model of Computation	n, A Linear Algebra	6 hrs
-	Formulation of the Circu	iit Model, Reversible Compu	utation, A Preview of	0 1113
	Quantum Physics, Quantu	ım Physics and Computation		
		Dirac Notation: The Dirac		
2	Spaces, Dual Vectors, C	Operators, The Spectral Th	eorem, Functions of	6 hrs
_		cts, The Schmidt Decompos	ition Theorem, Some	0
	Comments on the Dirac N			
3	Introduction to Quantum Toolbox in Python: Installation, Basics and		4 hrs	
	Quantum mechanics			
	T	Unit –II		I
		rk of Quantum Mechanics: The		
4	System, Time-Evolution of a Closed System, Composite Systems,			6 hrs
	Measurement, Mixed States and General Quantum Operations, Mixed States, Partial Trace, General Quantum Operations			
		·		
		mputation: The Quantum Cir	·	
5	Gates, 1-Qubit Gates, Controlled-U Gates, Universal Sets of Quantum Gates,			6 hrs
	Efficiency of Approximating Unitary Transformations, Implementing Measurements with Quantum Circuits			
		ploring Python for Solving Pro	hlems / Projects using	
6	Quantum Computing.	piornigi yenon ioi solviligi io	Siems / Frojects using	4 hrs
Unit –III				
	Introductory Quantum		Versus Quantum	
7	, ,	ack, The Deutsch Algorithm	•	4 hrs
•	Algorithm, Simon's Algorithm			
		s done during the course: In	nage processing, Data	
8	Sciences, Machine Learni	<u>-</u>	.	4 hrs

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing ", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
'''	Q.No8	8	Solve Ally 1

Prog	gram: Bachelor of Eng	gineering		
Cou	Course Title: Applied Computational Medicine Course Code: 24ECSE320			
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 4 hrs/week	
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	ching Hrs: 30	Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
1		s Biology: Integrative Omio		05 hrs
2	_	nomics: Genomic Data Anal ne-Wide Association Stud	lysis, Machine Learning in lies (GWAS), Functional	05 hrs
3	Computational Proteomics: Protein Structure Prediction, Mass Spectrometry Data Analysis, Proteomics Data Integration, Applications in Drug Discovery			05 hrs
		Unit –II		
Computational Metabolomics: Metabolic Pathway Analysis, Metabolomics Data Interpretation, Metabolic Flux Analysis, Applications in Disease Modeling			05 hrs	
Computational Neuroscience: Neural Network Modeling, Brain-Computer Interfaces, Neuroinformatics, Case Studies: Brain Disorders				05 hrs
6	Advanced Computational Anatomy: 3D Reconstruction Techniques, Imaging Data Analysis, Organ-Specific Computational Models, Case Studies: Organs Beyond Brain and Heart			05 hrs
Text	Text Books:			
NA				
Reference Books:				
1. Lecture Notes and Handouts				
2	2. Reference papers / Slides/ Videos			

Evaluation Scheme ISA Scheme

Assessment	Conducted for marks	Weightage in (%)
ISA-1 (Theory)	30	22
ISA-2 (Theory)	30	33
Laboratory	60	34
Assessment	60	54
	Total	67

ESA Scheme

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

List of Exercises

Expt. No	Brief description about the experiments	No of lab
1.	a. To integrate genomics, transcriptomic, proteomics, and metabolomics data to identify potential disease biomarkers. or	02
	b. To construct and analyze biological networks, such as gene regulatory networks (GRNs) or protein-protein interaction (PPI) networks.	
2.	a. To analyze genomic sequences, perform DNA sequence alignment, and detect genetic variations (mutations, SNPs). Or	02
	a. To develop a machine learning model that predicts drug response for personalized medicine based on patient omics data.	
3.	a. To analyze population-scale genomic data and identify genetic markers associated with specific diseases. Or	03
	b. To analyze RNA sequencing (RNA-Seq) data for gene expression profiling in normal vs. diseased tissues	
4.	a. To predict the 3D structure of a protein from its amino acid sequence using computational methods. Or	02
	b. To process and analyze mass spectrometry (MS) data to identify proteins in a biological sample.	
5.	a. To integrate proteomics datasets with other omics data (e.g., genomics, transcriptomics) to identify disease biomarkers. Or	03
	b. To use molecular docking techniques to predict drug binding interactions with a target protein.	
6.	To create a computational model of lung airflow and study respiratory function. Or	02
	b. To analyze organ structures, functions, and disease impact beyond the brain and heart.	

Program: Bachelor of Engineering					
Course Title: Quantum Algorithms and Cryptography Course Code: 25ECSE336					
L-T-P	T-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/week			<	
ISA N	A Marks: 67 ESA Marks: 33 Total Marks: 100				
Teac	hing Hrs: 30	Practical: 28	Exam Duration: 2 hrs		
		Unit –I			
	Introduction to Quantum	Computing: Mathemati	cal models for quantum		
1	mechanics, Single and mul	lti-qubit quantum gates a	and circuits, Concepts of	06 hrs	
	entanglement, no-cloning	theorem, and quantum	parallelism.		
2	Quantum Algorithms: Deutsch-Jozsa, Simon's, Bernstein-Vazirani,				
_	Grover's, and Shor's algorithms.			06 hrs	
	Post-Quantum Cryptography: Introduction to lattices, codes, and				
	isogenies, Useful lattice p	,	, ,		
3	Integer Solution (SIS) problems, Connection to dihedral hidden subgroup			08 hrs	
	problem, Basic primitives: post-quantum public key encryption and				
	signatures, Quantum hardness of lattice problems.				
	Unit –II				
	Public Key Encryption an	•	,. •		
4	analysis of public key encr	yption schemes. Concep	ts of fully homomorphic	04hrs	
	encryption.				
	Quantum Key Distribution: Protocols for quantum key distribution,				
5	Quantum one-time pad ar	• •	•	06hrs	
	encryption, Quantum fully	/ homomorphic encrypti	on.		

Text Book

- 1. Hiu Yung Wong. Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps. Springer, 2023.
- 2. Marc Joye, Mirela Iftene, and Pascal Paillier. Homomorphic Encryption for Data Science (HE4DS). Springer, 2023

References:

- 1. Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, Thomas Vidick. Public-Key Encryption with Quantum Keys. Springer, 2023
- Agrawal, S. (n.d.). Quantum Algorithms and Cryptography. NPTEL Indian Institute of Technology Madras. Retrieved from https://onlinecourses.nptel.ac.in/noc23 cs04.

Lab Experiments	
Lab 1: Quantum Gates	Objective: Understand and implement single and multi-qubit
and Circuits	quantum gates.
	Activities:
	Implement basic gates like Pauli-X, Y, Z, Hadamard, and CNOT.
	Construct simple quantum circuits using these gates.
	Tools: Qiskit (Python-based quantum computing SDK).
Lab 2: Entanglement and	Objective: Explore quantum entanglement and the
No-Cloning Theorem	implications of the no-cloning theorem.
	Activities:
	Create Bell states to demonstrate entanglement.
	Attempt to clone a quantum state and observe the results,
	reinforcing the no-cloning theorem.
	Tools: Qiskit, IBM Quantum Lab
Lab 3: Quantum	Objective: Demonstrate the concept of quantum parallelism.
Parallelism	Activities:
	Implement superposition states and observe parallel
	computation outcomes.
	Tools: Qiskit.
Lab 4: Quantum	Objective: Implement and analyze fundamental quantum
Algorithms	algorithms.
	Activities:
	Deutsch-Jozsa Algorithm: Determine if a function is
	constant or balanced.
	Simon's Algorithm: Find the period of a function.
	Bernstein-Vazirani Algorithm: Determine a hidden string.
	Grover's Algorithm: Search for an element in an unsorted
	database.
	Shor's Algorithm: Factorize integers.
	Tools: Qiskit.
Lab 5: Lattice-Based	Objective: Understand the structure and applications of
Cryptography	lattices in cryptography.
	Activities:
	Explore lattice problems like Learning with Errors (LWE)
	and Short Integer Solution (SIS).
	Implement basic lattice-based encryption schemes.
	Tools: Python

Lab 6: Quantum-Resistant
Public Key Encryption and
Signatures

Objective: Implement and analyze post-quantum public key encryption and digital signature schemes.

Activities:

- Implement schemes like CRYSTALS-Kyber (encryption) and CRYSTALS-Dilithium (signatures).
- Test the schemes against potential quantum attacks.

Tools: Python, available cryptographic libraries.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
	Total	33

Progra	am: Bachelor of Engineeri	ng		
Course Title: Algorithmic Problem Solving Course Code: 24ECS		E309		
L-T-P:	2-0-4	0-4 Credits: 6		week
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 30	Practical Hrs: 112	Exam Duration: 2 hrs	
		Unit –I	1	
1	Design Philosophy and Reflections: Algorithm Design Techniques and Principles, Case Studies and Reflections		5 hrs	
2	Competitive Programming and Problem Solving: Why Competitive Programming, Handbook and Rules, Theoretical Implications, Global Level Standard Sets			5 hrs
3	System Design: Roadmap, System Design Components, Principles and Theorems, Backend and Front End Design, Communication and Interaction		5 hrs	
	Unit –II			
4	4 Dynamic Programming: Common and Typical Problem Sets, Idea and Intuition, Design of DP Problems		5 hrs	
5	Search Space Analysis: Search Space, Graph Algorithms, Heuristic Space Analysis			5 hrs
6	Special Topics: Special To	opics and Case Studies – Con	temporary Problems	5 hrs

- 1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.
- 2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.
- 3. Laaksonen A., "Competitive Programmer's Handbook", CSES Set, 2018.

Reference Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.
- 2. Online Coding Platforms

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	17
ISA-2 (Theory)	30	1/
Lab Activity	50	33
Total		50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	50
	Total	50

Lab Experiments

Experiment No.	Concept	Hours
1	Design Techniques and Reflections	16
2	Mathematics in Competitive Programming	16
3	Dynamic Programming	16
4	Array Query and Case Studies	16
5	Search Space Analysis	16
6	Problem Assortments	16
7	CSES Problem Set	16

Course Title: Semantic Web L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/wee ISA Marks: 50 Teaching Hrs: 40 Exam Duration: 03 hrs Unit –I Introduction to Semantics: History of the Web, Limitations, Vision of	ek		
ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 40 Exam Duration: 03 hrs Unit –I			
Teaching Hrs: 40 Exam Duration: 03 hrs Unit -I	rs		
Unit –I	rs		
Introduction to Semantics: History of the Web, Limitations, Vision of			
initial to demanded instary of the view, Emmadons, vision of			
1 Semantic Web, Principles, Data Integration Across Web, Data Modeling 4	hrs		
Methods, Semantic Relationships, Metadata, Perpetual Data			
2 Expressing Meaning: Triple Store, Merging Graphs, Querying: Case Study 4	hrs		
Using Semantic Data: Query Language, Feed Forward Inference,	hua		
Searching for Connections, Linked Data, Freebase	8 hrs		
Unit -II			
Working with Semantics: RDF—The Basis of the Semantic Web, OWL, 8	hrs		
Metadata with RDF, Metadata Taxonomies, Ontology	1115		
Reasoning and Social Web: Reasoning types: Approximate Reasoning 8	hrs		
and Bounded Reasoning, Social Semantic Web, Semantic Crawlers	1113		
Unit –III			
Semantic Modeling			
6 Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, 8	hrs		
Case Studies: Dr. Watson, Yahoo! SearchMonkey			

- 1. Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Semantic Web Primer, MIT Press; 3rd edition, 2012.
- 2. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic Web: Build Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009.

Reference Books:

- 1. Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall; 1st edition, 2009.
- 2. Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011.
- 3. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
ı	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
'''	Q.No8	6	Solve Ally 1

Cour	rse Title: DevOps		Course Code: 24ECSE310		
	T-P: 1-0-2 Credits: 3 Contact Hrs: 5hrs/week				
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100		
Teac	eaching Hrs: 20 Practical: 56 Exam Duration: 3 hrs				
	_	Unit –I			
	Introduction to Devops and Linux for Automation: Introducing DevOps,				
	Software developme	nt life cycle, Agile pract	ice applied to Devops,		
_	Infrastructure As Code	e, Continuous Integration ar	nd Development.		
1	Linux and Automatio	n: File System and Directo	ory Management, Process	3 hrs	
	Management, User	and Group Management,	Network Management,		
	Package Management				
	Introduction to AW	/S and Version Control	Systems: AWS Cloud:		
	Introduction to cloud computing & AWS, Regions & AZ's, EC2, EBS, EFS, Auto				
	scaling, Load balancin	g & Route 53, VPC, Object	storage(S3), AWS Lambda		
2	& CLI.			3 hrs	
	Version Control with Git: Source Code Management (SCM), Git branching				
	and merging, Git Ove	erview, creating pull reques	st, Code Review, Merging		
	changes, Create a rep	o and push code on GibHub	/ Bitbucket.		
	Containerization and	Continuous Integration in	AWS: Jenkins- launching		
	Jenkins through Terr	aform, configuration, integ	grating Git with Jenkins,		
3	integrating Maven wit	h Jenkins, Building first Jenk	kins job.	5 hrs	
3	Docker: Containers	Concepts, Container Vs \	Virtual Machine, Docker	5 nrs	
	installation, Managing	g Container with Docker C	Commands, Building your		
	own docker images.				
	Configuration Management and Continuous Monitoring: Ansible:				
4	Introduction, integrat	ing Ansible with Jenkins, cr	reating Docker image and	4 hrs	
4	pushing in ECR, creat	ting CI playbook, Integratir	ng CI playbook in CI job,	4 1115	
	1	Integrating CD playbook in		l	

- 1. Joakim Verona, "Practical DevOps." Packt Publishing Ltd, Feb. 2016, ISBN: 9781785882876
- 2. Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans." Leanpub, 2015.
- 3. John Ferguson, "Jenkins: The Definitive Guide" Smart Publisher: O'Reilly Media, Release Date: June 2016.

Reference Books:

1. Jennifer Davis, Ryn Daniels, "Effective DevOps, Building a Culture of Collaboration, Affinity, and Tooling at Scale", Publisher: O'Reilly Media, Release Date: June 2016.

2. Gene Kim, Patrick Debois, John Willis, Jez Humble, "The DevOps Handbook: How to Create World-Class Speed, Reliability, and Security in Technology Organizations", IT Revolution Press, 2016.

List of Experiments

Expt. No.	Experiments	No. of Slots
1.	 Exploring AWS cloud services Exploring Linux commands for automation on AWS cloud server 	1
2.	Exploring Git Commands through Collaborative coding.Implement GitHub Operations	2
3.	 Applying CI/CD Principles to Web Development Using Jenkins, Git, and Local HTTP Server 	2
4.	 Exploring Containerization and Application Deployment with Docker Applying CI/CD Principles to Web Development Create the GitHub A/C to demonstrate CI/CD pipeline using Cloud Platform. 	3
5.	 Certification Courses: Infosys Springboard Linux for Cloud & DevOps Engineers (https://infyspringboard.onwingspan.com/web/en/app/toc/lex_a uth_014157703091879936293/overview) Practical AWS for DevOps: Exploring AWS DevOps Services (https://infyspringboard.onwingspan.com/web/en/viewer/html/l ex_auth_013817506349555712536) Jenkins (https://infyspringboard.onwingspan.com/web/en/app/toc/lex_a uth_0130944405219573762553_shared/overview) Ansible (https://infyspringboard.onwingspan.com/web/en/app/toc/lex_a uth_0130944185917358082036_shared/overview) Docker (https://infyspringboard.onwingspan.com/web/en/app/toc/lex_a uth_01329507424063488045376_shared/overview) 	4
6.	Course Project Review (3 Reviews)	3

Evaluation Scheme (ISA)

Assessment	Conducted for Marks		Weightage in Marks
Theory	ISA	40	34
	Evaluation 1	10	
	Project review -Phase 1	10	
	Project Review – Phase 2	10	
Lab	Project Review – Phase 3	10	
	Infosys Springboard certification	20	
	Lab Assessment Total	60	33
		Total	67

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
ESA Lab	40	33
	Total	33

	am: Bachelor of Engineering	5		
Cours	e Title: MLOps		Course Code: 25ECSE337	
L-T-P:	1-0-2 Credits: 3		Contact Hrs: 5 hrs/week	
ISA M	arks: 67	ESA Marks: 33	Total Marks: 100	
Teach	ing Hrs: 15	Practical Hrs: 56	Exam Duration: NA	
		Unit - I		
	Foundations of MLOps:	Introduction to machine	learning operations	
1	MLOps: Lifecycle, MLOps v	vs DevOps, Tools overviev	v, Docker: Containers	06 hrs
	vs VMs, Docker images, Do	ocker Compose basics		
	Version Control for Data & Models, CI/CD Automation: Data Ve			
2	Control (DVC): Versioning	g datasets/models, meti	rics tracking CI/CD	09 hrs
2	Concepts: Overview, Jenkins basics, GitHub Actions or GitLab CI			05 1113
	Automation: Triggering mo	odel training using CI tools		
	Model Training Pipelines & Monitoring: MLFlow: Experiment tracking,			
3	Projects, Model Registry			
3	Kubernetes Basics: Pods, [Deployments, and Services	s using Minikube	05 hrs
	Monitoring Tools: Prometh	neus, Grafana basics.		
	Cloud-based MLOps & Fina	al Deployment Projects: A	WS MLOps Overview:	
4	S3, CodeBuild, SageMaker basics			04 hrs
4	Azure MLOps Overview: Azure ML Studio, YAML pipelines (optional)			
	Model Deployment: Dockerize, CI/CD integration, Monitoring			
Refere	ence Weblink:		<u>.</u>	

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
IS (Theory)	40	33
Lab	60	34
	Total	67

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Lab	40	33
	Total	33

Led.html

Laboratory Plan

SI. No.	Experiments	Number of slots
1.	Linux and Shell Scripting Basics, Git and GitHub	1
i	Integration	_
2.	DVC Setup for Data Versioning	1
3.	Pipeline Creation and Experiment Management,	2
4.	Dockerize a Flask ML Application	2
5.	Kubernetes Deployment on Minikube and CI/CD Pipeline	2
٦.	with Jenkins	_
6.	Monitor Metrics with Prometheus and Grafana	2
7	Model Lifecycle Management with MLFlow	2
8	Deploy ML Model using SageMaker	2

Progra	am: Bachelor of Engineering	g		
Course	Course Title: Theories of Intelligent Systems Course Code: 25ECSE3			338
L-T-P:	-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/wee		eek	
ISA M	larks: 67 ESA Marks: 33 Total Marks: 100			
Teachi	aching Hrs: 30 Practical Hrs: 28 Exam Duration: 2 hrs		s	
		Unit – I		
1	Machines, Ideas from Le	ea of Computation: Idea of ibniz, Babbage, Turing, Imitating Machinery and Intelliger	ation Game, Chinese	5 hrs
2	Languages and Limits: Grammar and Metaphor Cognition, Ambiguity and Recursion in Human Languages, Gödel's incompleteness, Wittgenstein on language limits, Programming Languages as Formal Systems, Functional Programming.		5 hr	
3	Computational Complexity: Real-world Problem-Solving Trade-offs, Optimization vs. Heuristic Problem-Solving, Visualization of Complexity, Verifiers vs. Solvers, Reductions (Intuitive Idea: Translating Puzzles), SAT and Why it Matters.		5 hrs	
	Unit – II			
4		yond TM: Interactive Compu e Two Generals Problem, Byz		5 hrs
Machines and Meaning: Symbolic AI vs Connectionist Models, Generative AI: Creativity and Randomness, Ethical and Existential Implications, Embodied Cognition, Posthumanism, Human-in-the-loop systems, Technology as cognitive scaffolding			5 hrs	
Computation and Consciousness: Integrated Information Theory (IIT), Global Workspace Theory (GWT), Hard Problem of Consciousness (Chalmers), Philosophical zombies, qualia, and Al		5 hrs		

- 1. George S. Boolos, John P. Burgess, Richard C. Jeffrey, Computability and Logic, 5th Edition, Cambridge University Press, 2007.
- 2. Michael Sipser, Introduction to the Theory of Computation, 3rd Edition, Cengage Learning, 2012.
- 3. Case Studies and Research Papers as per chapter topics

Reference Books:

- 1. Margaret A. Boden, Mind as Machine: A History of Cognitive Science, 1st Edition, Oxford University Press, 2006.
- 2. Andrew S. Tanenbaum, Maarten van Steen, Distributed Systems: Principles and Paradigms, 2nd Edition, Pearson Education, 2007.

Evaluation Scheme

ISA Scheme

Assessment	Conducted for marks	Weightage in (%)
ISA-1 (Theory)	30	22
ISA-2 (Theory)	30	33
Laboratory	60	2.4
Assessment	60	34
	Total	67

ESA Scheme

Assessment	Conducted for marks	Weightage in (%)
ESA (Theory)	60	33
	Total	33

List of Exercises

Expt./	Brief description about the experiment/job	No. of
No.		Lab. Slots
1.	Turing Machines	2
2.	Functional Programing, Principles and Limitations	2
3.	Computational Complexity	2
4.	Distributed Thinking	2
5.	Machines and Meaning	2
6.	Case Studies: Turing Test, Halting Problem	2