

Curriculum Structure and Curriculum Content for the Batch: 2023-27

School: Computer Science and Engineering

Program: BE- Computer Science and Engineering (Artificial Intelligence)

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives	s 5
Program Educational Objectives -PEO's	5
Curriculum Structure-Overall	7
Curriculum Structure-Semester wise	8
Semester - I	8
Semester - II	9
Semester: III	10
Semester: IV	11
Semester: V	12
Semester: VI	13
Semester- VII	14
Semester- VIII	15
List of Open Electives	16
List of Program Electives	17
Curriculum Content- Course wise	19

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education—recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the School / Department

Department Vision

The KLE Tech- School of Computer Science will excel and lead in education, research and innovation in computing and information technology, contributing to the evolving needs of the world we live in.

Department Mission

- To foster a dynamic academic environment with cutting edge curriculum and innovative educational experience to prepare graduates to succeed and lead in a wide range of computing and information technology businesses and occupations.
- To be at the forefront of research through new and exciting innovations leading to the future of computing technologies.
- To collaborate within and beyond discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

- PEO: 1. Graduates will demonstrate peer recognized technical competency to solve analyze, design, develop, deploy and maintain computing solutions for contemporary problems.
- PEO: 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- PEO: 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education and self-study.
- PEO: 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

- PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- PO 2: **Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO 3: **Design/Development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- PO 4: **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO 5: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO 6: **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO 7: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO 9: **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO 10: **Communication**: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Objectives -PSO's

PSO 1: Domain-specific knowledge: An ability to apply techniques to develop computer based solutions in the domain of data, system and network engineering.

PSO 2: **Software System Construction**: Apply design and development principles in the construction of software systems of varying complexity.

Curriculum Structure-Overall

CSE-AI					Total Program C	redit: 176 (44+132)		Year: 202	3-27
	I	II	III	IV	V	VI	VII	VIII	
	Single Variable Calculus 18EMAB101 (4-1-0)	Multivariable Calculus 18EMAB102 (4-1-0)	Linear Algebra 24EMAB208 (3-0-1)	Probability & Statistics 24EMAB209 (3-1-0)	Software Engineering 22ECAC301 (3-0-0)	Deep Learning 24ECAC305 (3-0-1)	Big Data & Analytics 24ECAC401 (2-0-1)	PE-6 XXECAE 4XX (3-0-0)	Internship Training
	Engineering Physics 22EPHB101 (3-0-0)	Engineering Chemistry 22ECHB102 (3-0-0)	Discrete Mathematical Structures 24ECAC201 (3-1-0)	Microcontroller Programming and Interfacing 24ECAC206 (1-0-2)	Computer Networks 24ECAC302 (3-0-0)	Embedded Intelligent Systems 24ECAC306 (1-0-2)	Cryptography & Network Security (24ECAC403)(2-0-1)	OE XXECAO 4XX (3-0-0)	25ECAI493 (0-0-6)
	Engineering Mechanics 15ECVF101 (4-0-0)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Computer Organization and Architecture 24ECAC202 (3-0-1)	Object Oriented Programming 24ECAC207 (3-0-0)	Machine Learning 22ECAC303 (3-0-0)	Natural Language processing and Gen Al 24ECAC307 (2-0-2)	PE-4 XXECAE4XX (3-0-0)	22E0	one Project CAW402 / Ship Project
Semester wise	C Programming for Problem Solving 18ECSP101 (0-0-3)	Engineering Exploration 22ECRP101 (0-0-3)	Design and Analysis of Algorithms 24ECAC203 (4-0-0)	Operating System Principles and Programming 24ECAC208 (4-0-1)	Internet of Things 24ECAC308 (2-0-1)	PE-2 XXECAE3XX (3-0-0)	PE-5 XXECAE4XX (3-0-0)	_	CAW494 0-0-11)
Courses Semo	Basic Electrical Engineering 18EEEF101 (3-0-0)	Basic Electronics 18EECF101 (4-0-0)	Database Management System 22ECAC204 (4-0-0)	Principles of Compiler Design 22ECAC209 (3-1-0)	Machine Learning Lab 22ECAP303 (0-0-1.5)	PE-3 XXECAE3XX (3-0-0)	Senior Design Project 22ECAW401 (0-0-6)		
Con	Design Thinking for Social Innovation 20EHSP101 (0-1-1)	Basic Mechanical Engineering 22EMEF101 (2-1-0)	Database Applications Lab 22ECAP201 (0-0-1.5)	Exploratory Data Analysis 24ECAC210 (2-0-2)	Web Technologies Lab 24ECAP304 (0-0-2)	Minor Project 24ECAW304 (0-0-6)	CIPE & EVS (Audit) 15EHSA401		
	Applied Physics Lab 21EPHP101 (0-0-1)	Professional Communication 15EHSH101 (1-1-0)	Algorithms Lab 24ECAP202 (0-0-2)	Object Oriented Programming Lab 24ECAP206 (0-0-1.5)	Computer Networks Lab 22ECAP302 (0-0-1.5)				
					PE-1 XXECAE3XX (3-0-0)				
					Mini Project 22ECAW301 (0-0-3)	Professional Aptitude & Logical Reasoning 16EHSC301 (3-0-0)			
			Corporate Communication 24EHSA201 (Audit)	Problem Solving & Analysis 24EHSA202 (Audit)	Arithmetical Thinking & Analytical Reasoning 23EHSA303 (Audit)	Industry Readiness & Leadership Skills (23EHSA304)(Audit)			
Credits	21	23	23.5	24.5	23	26	18		17

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	3	80	20	100	3 hours
7	21EPHP101	Applied Physics Lab	BS	0-0-1	1	2	80	20	100	3 hours
			14-2-5	21	27	440	260	700		

Date: Program Head

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
						Hours				Duration
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
4	22ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
6	22EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	3 hours
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
			14-3-6	23	32	410	290	700		

Date: Program Head

Semester: III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24EMAB208	<u>Linear Algebra</u>	BS	3-0-1	4	4	63	37	100	3 hours
2	24ECAC201	Discrete Mathematical Structures	PC	3-1-0	4	5	50	50	100	3 hours
3	24ECAC202	Computer Organization and Architecture	PC	3-0-1	4	5	63	37	100	3 hours
4	24ECAC203	Design and Analysis of Algorithms	PC	4-0-0	4	4	50	50	100	3 hours
5	22ECAC204	Database Management System	PC	4-0-0	4	4	50	50	100	3 hours
6	22ECAP201	Database Applications Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
7	24ECAP202	Algorithms Lab	PC	0-0-2	2	4	80	20	100	3 hours
8	24EHSA201	Corporate Communication	HSS	0-0-0	0	1	100	0	100	3 hours
		TOTAL	1	17-1-5.5	23.5	30	530	264	800	

Date: Program Head

Semester: IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24EMAB209	Probability & Statistics	BS	3-1-0	4	5	50	50	100	3 hours
2	24ECAC206	Microcontroller Programming and Interfacing	PC	1-0-2	3	5	67	33	100	3 hours
3	24ECAC207	Object Oriented Programming	PC	3-0-0	3	3	50	50	100	3 hours
4	24ECAC208	Operating System Principles and Programming	PC	4-0-1	5	6	60	40	100	3 hours
5	22ECAC209	Principles of Compiler Design	PC	3-1-0	4	5	50	50	100	3 hours
6	24ECAC210	Exploratory Data Analysis	PC	2-0-2	4	6	50	50	100	2 hours
7	24ECAP206	Object Oriented Programming Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	24EHSA202	Problem Solving & Analysis	HSS	0-0-0	0	1	100	-	100	3 hours
				16-2-6.5	24.5	34	506	294	800	

Date: Program Head

Semester: V

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	22ECAC301	Software Engineering	PC	3-0-0	3	3	50	50	100	3 hours
2	24ECAC302	Computer Networks	PC	3-0-0	3	3	50	50	100	3 hours
3	22ECAC303	Machine Learning	PC	3-0-0	3	3	50	50	100	3 hours
4	24ECAC308	Internet of Things	PC	2-0-1	3	4	67	33	100	2 hours
5	22ECAP303	Machine Learning Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
6	24ECAP304	Web Technologies Lab	PC	0-0-2	2	4	80	20	100	3 hours
7	22ECAP302	Computer Networks Lab	PC	0-0-1.5	1.5	3	80	20	100	3 hours
8	XXECAE3XX	Professional Elective-1	PE	3-0-0	3	3	50	50	100	3 hours
9	22ECAW301	Mini Project	PW	0-0-3	3	3	50	50	100	3 hours
10	23EHSA303	Arithmetical Thinking & Analytical Reasoning	HSS	0-0-0	0	1	100	0	100	3 hours
			TOTAL	14-0-9	23	30	656	344	1000	

Date: Program Head

Semester: VI

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24ECAC305	Deep Learning	PC	3-0-1	4	5	63	37	100	3 hours
2	24ECAC306	Embedded Intelligent Systems	PC	1-0-2	3	6	67	33	100	2 hours
3	24ECAC307	Natural Language Processing and Gen Al	PC	2-0-2	4	5	50	50	100	3 hours
4	XXECAE3XX	Professional Elective-2	PE	3-0-0	3	3	50	50	100	3 hours
5	XXECAE3XX	Professional Elective-3	PE	3-0-0	3	3	50	50	100	3 hours
6	24ECAW304	Minor Project	PW	0-0-6	6	3	50	50	100	3 hours
7	16EHSC301	Professional Aptitude & Logical Reasoning	HSS	3-0-0	3	3	50	50	100	3 hours
8	23EHSA304	Industry Readiness & Leadership Skills	HSS	0-0-0	0	1	100	-	100	3 hours
				15-0-11	26	29	479	321	800	

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

Date: Program Head

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	24ECAC404	Big Data & Analytics	PC	2-0-1	3	4	67	33	100	2 hours
2	24ECAC403	Cryptography & Network Security	PC	2-0-1	3	4	67	33	100	2 hours
3	XXECAE4XX	<u>Professional Elective-4</u>	PE	3-0-0	3	3	50	50	100	3 hours
4	XXECAE4XX	<u>Professional Elective-5</u>	PE	3-0-0	3	3	50	50	100	3 hours
5	22ECAW401	Senior Design Project	PW	0-0-6	6	3	50	50	100	3 hours
6	15EHSA401	CIPE & EVS (Audit)	HSS	0-0-0	0	2	50	50	100	3 hours
			Total	10-0-8	18	19	316	284	600	

Date: Program Head

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	XXECAE4XX	Professional Elective-6	PE	3-0-0	3	3	50	50	100	3 hours
2	XXECAO4XX	Open Elective	OE	3-0-0	3	3	50	50	100	3 hours
3*	25ECAI493	Internship Training	PW	0-0-6	6	12	50	50	100	3hours
4*	25ECAW494	Internship Project	PW	0-0-11	11	22	50	50	100	3 hours
	22ECAW402	Capstone Project								
			Total	6-0-17	17	34	100	100	200	

^{*}Note students can either choose (1, 2 & 4(Capstone project) or (3-Industry training & 4-Industry project).)

Date: Program Head

Semester	1	=	III	IV	V	VI	VII	VIII	Total
Credits	21	23	23.5	24.5	23	26	18	17	176

List of Open Electives

Sr. No	Name of the Course	Course Code
1.	Distributed and Cloud Computing (2-0-1)	22ECAO401
2.	Database Management System (2-0-1)	22ECAO404
3.	High Performance Computing for Engineering Applications (3-0-0)	22ECAO402
4.	Essentials of IT (0-0-3)	22ECAO405
5.	Software Engineering (3-0-0)	22ECAO403
6.	Big Data Analytics (3-0-0)	22ECAO406

List of Program Electives

Sr. No	Name of the Course	Course Code					
	3 rd Year (Professional Electives- 1, 2 & 3)						
Data Intelligence							
1.	Digital Image and Video Processing (2-0-1)	24ECAE310					
2.	Computer Vision (3-0-0)	24ECAE336					
3.	Reinforcement Learning (3-0-0)	22ECAE312					
4.	Bioinformatics (3-0-0)	22ECAE314					
5.	Computer Graphics(3-0-0)	22ECAE315					
6.	Multimedia Computing (3-0-0)	22ECAE316					
7.	Ethics in AI (3-0-0)	23ECAE325					
8.	Augmented and Virtual Reality (2-0-1)	24ECAE303					
9.	Parallel Computing (3-0-0)	22ECAE320					
10.	24ECSE340						
	Networking and Security						
1.	Cloud Computing (2-0-1)	24ECAE338					
2.	<u>Data Integration and Cloud Services</u> (1-0-2)	24ECAE319					
3.	Cyber Security (3-0-0)	24ECAE337					
4.	Web Security (2-0-1)	24ECAE302					
5.	Security Operations (2-0-1)	25ECAE330					
6.	Software Defined Networks (3-0-0)	25ECAE331					
7.	Edge Computing (2-0-1)	25ECAE332					
	System and Software Development						
1.	Advanced Java Programming (2-0-1)	24ECAE329					
2.	Blockchain and Distributed Ledgers (2-0-1)	24ECAE339					
3.	Algorithmic Problem Solving(2-0-4)	24ECSE309					
4.	DevOps and MLOps (0-0-2)	23ECAE335					
5.	Microservice Architecture using JAVA(2-0-1)	24ECAE304					
6.	Multicore architecture and Programming (2-0-1)	25ECAE334					

	4 th Year (Professional Electives- 4, 5 & 6)						
	Data Intelligence						
1.	Advanced Computer Graphics (0-0-3)	22ECAE407					
2.	Social Network Analysis (2-0-1)	24ECAE405					
3.	Information Retrieval(2-0-1)	24ECAE406					
4.	Multi Modal Learning (2-0-1)	25ECAE416					
5.	Augmented and Virtual Reality (2-0-1)	25ECAE417					
6.	Quantum Computing (3-0-0)	25ECAE421					
7.	Agentic AI (2-0-1)	25ECAE426					
	Networking and Security						
1.	Al for Cyber Security (2-0-1)	25ECAE419					
2.	Mobile and Wireless Networks (3-0-0)	22ECAE412					
	System and Software Development						
1.	<u>C# and .NET</u> (2-0-1)	25ECAE422					
2.	Robotic Process Automation Design and Development (2-0-1)	25ECAE423					
3.	Software Testing (3-0-0)	25ECAE424					
4.	Software Architecture and Design Thinking (3-0-0)	25ECAE425					
5.	Advanced Parallel Computing (3-0-0)	22ECAE414					
6.	Scalable AI(3-0-0)	22ECAE415					

Curriculum Content- Course wise

Semester - I

Course Title: Single Variable Calculus L-T-P: 4-1-0 Credits: 05 Contact Hours: 6hrs/week ISA Marks: 50 Total Marks: 100 Teaching Hours: 50 Tutorial/Practical: 28hrs Unit I Introduction to Mathematical Modeling: What is Mathematical modeling, why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	Progra	am: Bachelor of Engine	ering	Semester - I				
ISA Marks: 50 Teaching Hours: 50 Tutorial/Practical: 28hrs Unit I Introduction to Mathematical Modeling: What is Mathematical modeling, why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	Cours	e Title: Single Variable	Calculus	Course Code: 18EM	AB101			
Teaching Hours: 50 Tutorial/Practical: 28hrs Unit I Introduction to Mathematical Modeling: What is Mathematical modeling, why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	L-T-P: 4-1-0 Credits: 05 Contact Hours: 6hrs				/week			
Unit I Introduction to Mathematical Modeling: What is Mathematical modeling, why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100						
Introduction to Mathematical Modeling: What is Mathematical modeling, why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limits- graph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton- Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L- Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	Teaching Hours: 50 Tutorial/Practical: 28hrs Exam Duration: 3hrs				s			
why Mathematical modeling, use of Mathematical modeling, Process of mathematical modeling, types of modeling with simple examples Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric			Unit I					
Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		Introduction to Mathematical Modeling: What is Mathematical modeling,						
Functions, Graphs and Models: Functions, types of functions, transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	1	1 why Mathematical modeling, use of Mathematical modeling, Process						
transformations and models (Linear, exponential, trigonometric). MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		mathematical modeling, types of modeling with simple examples						
MatLab: Graphing functions, Domain-Range and Interpreting the models Calculus of functions and models: Limit of a function, Infinite limitsgraph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		Functions, Graphs	and Models: Functions, ty	pes of functions,				
Calculus of functions and models: Limit of a function, Infinite limits- graph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton- Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L- Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence — p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	2	transformations and m	nodels (Linear, exponential, trigo	onometric).	05 hrs			
graph, Continuity and discontinuity, Intermediate value theorem statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		MatLab: Graphing fund	ctions, Domain-Range and Inter	preting the models				
statement, Roots of the equation using Bisection Method and Newton-Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		Calculus of functions	and models: Limit of a func	tion, Infinite limits-				
Raphson Method Interpretation of derivative as a rate of change, All the rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		graph, Continuity a	nd discontinuity, Intermedial	te value theorem				
rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		statement, Roots of t	he equation using Bisection Me	ethod and Newton-				
rules of derivatives (List only), Maxima, Minima and optimization problems. Curvature and Radius of Curvature, Indeterminate forms, L-Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	Raphson Method Interpretation of derivative as a rate of change, All th							
Hospital's rule-Examples MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		rules of derivatives (List only), Maxima, Minima and optimization			111113			
MatLab: optimization problems. Curvature problems Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric								
Unit II Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		Hospital's rule-Exampl	es					
Infinite Series: Definition, Convergence of series, Tests of convergence – p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		MatLab: optimization	·					
p-series, Alternating series. Power series, radius of convergence, Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric			Unit II					
and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric		Infinite Series: Definit	ion, Convergence of series, Tes	ts of convergence –				
and Maclaurin's series, Applications of Taylor's and Maclaurin's series MatLab: Convergence of series Integral calculus: Tracing of standard curves in Cartesian form, Parametric	4	p-series, Alternating s	eries. Power series, radius of co	onvergence, Taylor's	06 brs			
Integral calculus: Tracing of standard curves in Cartesian form, Parametric	•	and Maclaurin's series	, Applications of Taylor's and M	aclaurin's series	00 1113			
		MatLab: Convergence of series						
forms and Dalon forms. Data and consult for the contribution of		Integral calculus: Tracing of standard curves in Cartesian form, Parametric						
Torm and Polar form; Beta and gamma function, relation between them,		form and Polar form; Beta and gamma function, relation between them,						
evaluation of integrals using Beta and gamma functions; Applications to		evaluation of integrals using Beta and gamma functions; Applications to						
5 find arc length, Area, Volume and surface area (Cartesian, parametric and 14 hrs	5	find arc length, Area, Volume and surface area (Cartesian, parametric and						
polar curves). Approximate integration- Trapezoidal rule, Simpson's 1/3								
rule		rule						
MatLab: problems on arc length, area, volume and surface area								
Unit III			Unit III					

Ordinary differential equations of first order: (a) Introduction to Initial
Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problemsEuler's method, Modified Euler's method and Runge-Kutta method
(b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies.

MatLab: Solve differential equations

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7e 2010

Reference Books:

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

BACK

Program: Bachelor of Engineering Semester - I							
Cou	rse Title: Engineering Ph	nysics	Course Code: 22EPH	3101			
L-T-	P: 3-0-0	Credits:3	Contact Hrs: 3hrs/we	eek			
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100				
Tea	ching Hrs: 40	Tutorial/Practical:	Exam Duration: 3 Hrs				
		Unit I					
	Conduction in semiconductors: Atomic theory: The atom, electron orbits						
	and energy levels, energy bands,						
	Conduction in solids: E	lectron motion and hole tr	ransfer, conventional current				
	and electron flow						
	Conductors, semicond	uctors and insulators: Bo	nding force between atoms,				
1	Energy bands in differe	ent materials.		05 hrs			
-	n-type and p-type S	Semiconductors: Doping,	, n-Type material, p-Type				
	material, Majority and	d minority charge carriers	s, Effects of heat and light,				
	charge carrier density.						
	Semiconductor conductivity: Drift current, diffusion current, charge carrier						
	velocity, conductivity, I	Hall Effect.					
	(Text 1 Page No 1-33)						
			and n-Type, Barrier voltage,				
		itative theory of p-n Juncti					
	_	erse biased junction, forwa	ard biased junction, junction				
	temperature effects.						
	Junction currents and voltages: Shockley equation, junction currents,						
	junction voltages. p-n Junction Diode characteristics and parameters: Forward and reverse						
	characteristics, diode p	•	eters. Forward and reverse				
	·		cal diodes, piecewise linear				
2			ar aroues, preceivise intear	10 Hrs			
_	characteristics, DC equivalent circuits.DC load line analysis: DC load line, Q-Point, calculating load resistance and						
	supply voltage.						
	Temperature Effects: Diode power dissipation, forward voltage drop,						
	dynamic resistance.						
	Diode AC models: Junction capacitance, AC-equivalent circuits (Reverse						
	biased and forward biased), reverse recovery time.						
	Diode specifications: Diode data sheets, low power diodes, rectifier diodes						
	Diode testing: Ohmmeter tests, use of digital meter, plotting diode						
	characteristics.						

Zener diodes: Junction break down, circuit symbols and packages, characteristics and parameters, data sheet, equivalent circuits.

(Text 1 Page No 34-71)

Unit II

Electrostatics: Review on vectors: Coordinate Systems, Vector and Scalar Quantities, Properties of Vectors, Components of a Vector and Unit Vectors (Text 2 Page No 59-77)

Electric Fields:

Properties of Electric Charges, Charging Objects by Induction, Coulomb's Law, Analysis Model: Particle in a Field (Electric), Electric Field of a Continuous Charge Distribution, Electric Field Lines Motion of a Charged Particle in a Uniform Electric Field

Gauss's Law:

Electric Flux, Gauss's Law, Application of Gauss's Law to Various Charge Distributions, Conductors in Electrostatic Equilibrium

3 Electric Potential:

Electric Potential and Potential Difference, Potential Difference in a Uniform Electric Field, Electric Potential and Potential Energy Due to Point Charges, Obtaining the Value of the Electric Field from the Electric Potential, Electric Potential Due to Continuous Charge Distributions Electric Potential Due to a Charged Conductor, Applications of Electrostatics

Capacitance and Dielectrics:

Definition of Capacitance, Calculating Capacitance, Combinations of Capacitors, Energy Stored in a Charged Capacitor, Capacitors with Dielectrics, Electric Dipole in an Electric Field, An Atomic Description of Dielectrics (Text 2 Page No 690-807)

Unit - III

Electromagnetics: Magnetic Fields: Analysis Model: Particle in a Field (Magnetic), Motion of a Charged Particle in a Uniform Magnetic Field, Applications Involving Charged Particles Moving in a Magnetic Field, Magnetic Force Acting on a Current-Carrying Conductor, Torque on a Current Loop in a Uniform Magnetic Field,

Sources of the Magnetic Field:

The Biot–Savart Law, The Magnetic Force Between Two Parallel Conductors, Ampere's Law, The Magnetic Field of a Solenoid, Gauss's Law in Magnetism, Magnetism in Matter

Faraday's Law:

Faraday's Law of Induction, Motional emf, Lenz's Law, Induced emf and Electric Fields Generators and Motors, Eddy Currents

15 Hrs

10 Hrs

(Text 2 Page No 868-969)

Text Book:

- 1. David A Bell, "Electronics Devices and Circuits", Fifth Edition, Oxford University Press.
- 2. Serway and Jewett, "Physics for Scientists and Engineers-with Modern Physics", 9th Edition, CENGAGE learning. 2014

References:

- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH
- 2. R P Feynman, Robert B Leighton, Matthew Sands, The Feynman Lectures on Physics Vol-II, Norosa Publishing House (1998).
- 3. Ben G Streetman, Solid State Electronic Devices, Prentice Hall, 1995

BACK

Progi	ram: Bachelor of Engi	neering	Semester - I		
Cours	se Title: Engineering I	Mechanics	Course Code: 15ECVF1	01	
L-T-P: 4-0-0 Credits:4 Contact Hrs: 4hrs/weel				k	
ISA N	Narks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ning Hrs: 50	Tutorial/Practical:	Exam Duration: 3 hour	S	
Unit I					
Overview of Civil Engineering: Evolution of Civil Engineering Specialization, scope and role. Impact of Civil Engineering on National economy, environment and social & cultural fabric. Challenges and Opportunities for Civil Engineers					
2	composition & Resolution of a force, Equilibrium, Equilibrant, Formulae for resultant of forces and resolution of a force. Numerical problems on resultant of forces. Equilibrium of coplanar concurrent force system: Conditions of equilibrium, Action & Reaction, Free body diagram, Lamis'				
theorem. Numerical problems on equilibrium of forces. Coplanar non-concurrent force system: Resultant of a force system: Moment, moment of a force, couple, moment of a couple, Characteristics of couple, Equivalent force-couple system, Numerical problems on moment of forces and couples, on equivalent force-couple system. Varignons principle of moments, Resultant of coplanar- non-concurrent force systems and numerical problems.				05 hrs	
		Unit II			
4 Equilibrium of a force system (Chapter 3 contd): Conditions of equilibrium, types of support and loading for a statically determinate beam, Reactions at support connections, Numerical problems on equilibrium of force systems and support reactions for a statically determinate beam.				5 hrs	
5	coefficient of frictio repose, cone of fric friction formula. No	roduction, types of friction, definence of the control of the cont	of friction and angle of eory. Derivation of belt motion on horizontal	8 hrs	

6	Simple Stress and Strain: Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress — Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics.	6 hrs
	Unit – III	
7	Centroid of Plane Figures: Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.	5 hrs
8	Second moment of area (Plane figures): Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.	5 hrs

Text Book:

- 1. Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Company, New York, 1988.
- 2. Bhavikatti, S.S., and Rajasshekarappa K.G., Engineering Mechanics, 3Ed., New Age International Pub. Pvt. Ltd., New Delhi, 2008.
- 3. Kumar, K.L., Engineering Mechanics, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 4. Punmia, B.C., Jain, A. and Jain, A., Mechanics of Materials, Lakshmi Publications, New Delhi, 2006

References:

- 1. Jagadeesh, T.R. and Jayaram, *Elements of Civil Engineering*, Sapna Book House, Bangalore, 2006.
- 2. Ramamrutham, S., *Engineering Mechanics*, Dhanpat Rai Publishing Co., New Delhi, 1998.
- 3. Singer, F.L., *Engineering Mechanics*, 3rd edition Harper Collins, 1994.
- 4. Timoshenko, S.P. and Young, D.H., *Engineering Mechanics*, 4th edition, McGraw Hill Publishing Company, New Delhi, 1956.
- 5. Irving H Shames, *Engineering Mechanics*, 3rd edition, Prentice-Hall of India Pvt. Ltd, New Delhi- 110 001, 1995.

BACK

Prog	gram: Bachelor of Engin	eering	Semester - I			
Cou	rse Title: C Programmin	g for Problem Solving	Course Code: 18EC	SP101		
L-T-I	P: 0-0-3	Credits: 3	Contact hrs: 6 Hrs	/week		
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100			
Tead	Teaching: Tutorial/Practical: 84hrs Exam Duration: 3 I					
	Introduction to Problem Solving					
1	Introduction to algorith	nms / flowcharts and its notations,	top down design,	3 hrs		
	elementary problems.					
	Basics of C programmi	ng language				
2	Characteristics and use	es of C, Structure of C program, C	Tokens: Keywords,	15 hrs		
_	Identifiers, Variables, (Constants, Operators, Data-types,	Input and Output	155		
	statements.					
	Decision Control State					
	_	statements: if statement, if else	•			
3	•	nent, unconditional branching st	atements: break,			
continue.						
	Introduction to Debugg	, ,		12 hrs		
	Introduction to Test Dr	iven Programming.				
4	Iterative Statements			10 hrs		
	while, do while, for, nested statements					
	Functions					
5	Introduction, Function declaration, definition, call, returns statement,					
	passing parameters to functions, introduction to macros. Introduction to Coding Standards					
	Arrays and Strings	Standards				
	,	ion Associng alamants Staring	values in arrays			
6		ion, Accessing elements, Storing imensional array, Operations on		15 hrs		
0	-	illensional array, Operations on	two difficisional	12 1112		
arrays, Introduction to Code Optimization and refactoring						
	Pointers					
		nointer nointer variables noint	er expression and			
7	Introduction, declaring pointer, pointer variables, pointer expression and					
	arithmetic, passing arguments to functions using pointers, pointers and arrays, passing an array to a function.					
	Structures and Unions					
8		tructures to functions, Array of stru	uctures, Unions	05 hrs		

Text Books

- 1. R.G. Dromey, How to Solve it by Computer, 1ed, PHI, 2008.
- 2. Yashvant Kanetkar, Let us C, 15th ed, BPS Publication, 2016.

Reference Books:

- 1. B W Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B S Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

BACK

Program: Bachelor of Engineering Semester - I						
Course Title: Basic Electrical Engineering Course Code: 1				EF101		
L-T-P: 3-0-0 Credits: 3		Contact: 3hrs/week				
ISA Mark	s: 50	ESA Marks: 50	Total Marks: 100			
Teaching	: 40 Hrs	Tutorial/Practical:	Exam Duration: 3	Hrs		
		Unit-I				
1	impact of Electi Sources of gene	lectrical Engineering: Specialization ical Engineering on national econoration, sustainability, challenges and ers, electrical engineering marvels,	my, environment, I opportunities for	02 hrs		
DC Circuits: Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Time-domain analysis of first-order RL and RC circuits.						
AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters				08 hrs		
	T	Unit-II				
Electrical Actuators Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-shunt, series, compound, separately excited, PMDC motors – Speed Control, Stepper Motors, BLDC motors, three phase induction motor, Characteristics and applications, selection of motors for various applications.				9 hrs		
5	motors for various applications. Power Electronics (Text1, chapter 45): Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The thyristor in practice, The fully controlled AC/DC converter, AC/DC inversion, Switching devices in inverters, Three-phase rectifier networks, The three-phase fully controlled converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion switched-mode power					

	Unit-III				
6	Electrical Wiring, Safety and protection(Ref:Text3-page 1 to 10): Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards.	05 hrs			
7	Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing. Numericals.	05 hrs			

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th, Pearson Education, 2001
- 2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition
- 4. Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition

Reference Books:

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

BACK

Prog	Program: Bachelor of Engineering Semester - I						
Course Title: Design Thinking for Social Innovation Co					rse Code: 20EHSP101		
L-T-P	: 0-1-1		Credits:	2		Con	tact Hrs: 4hrs/week
ESA N	Marks	: 80	ISA Mar	ks: 20		Tota	l Marks: 100
Teach	ning H	rs:	Tutorial	/Practica	al: 56 hrs	Exar	n Duration: 3 hrs
Mod	dule	Topics		,	Assignments		Support activities / Tools
		1. Introduction to	Social	Readin	g assignments	•	Class activity on
		Innovation:		• Rea	nd the handout o	n	Behavioral Blocks
		 Awakening soci 	al	"Th	e Process of		to Innovation
		consciousness		Soc	ial Innovation" b	у	Discussion on the
		(www.yourstory.c	om)	Geo	off Mulgan		behavioural
		 Social Innovation 	n and	• Des	sign thinking for		blocks.
		Leadership		Soc	ial Innovation		
		Engineering& S	ocial	Writte	n Assignments	•	Introducing
	Course sensitization	innovation (EPI	CS)	• Wr	iting about		oneself with
F		(Connecting SI Co	urse to	Aks	shaya Patra in		three Adjectives-
ME	sitiz	Mini Project,		clas			Appreciating
LOP	sens	Capstone Proje		_	ckground		diversity and
EVE	rse	Campus Placen	nents)		ormation about		discovering self
GE, TOOLS & DEVELOPMENT	Cou	Course Overvie	W		shaya patra and		• Group Formation
rs 8		• Students' Self			Social Cuase it i		Activity
00.		Introduction A	ctivity		dressing)		(Forming square)
Е, Т		 Group formatio 	n		instorming	'	(Making four
		Activity			sion on Social		equilateral triangles
WLE				Inn	ovators in Class		out of popsicle sticks
KNOWLED							to enhance group
×	· 도						cohesiveness
							amongst the group mates)
		Seven Mindsets:		Readin	g assignments		• (How to train the
	ts	1. Empathy			ndout on " Creat	e	Dragon?
	Create Mindsets	(Example of The B	oy and		ndsets"		Common Video
	Αï	the Puppies)					for all the
	ate	2. Optimism					mindsets)
	Cre						Watching in Class
	_						TED Talk on "How

	(Person Paralyzed waist down / Glass Halh full Half Empty) 3. Iteration (Thomas Alva Edison) 4. Creative Confidence (Origamy – Josef Albers) 5. Making it 6. Embracing Ambiguity (Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched)		to build youir Creative Confidence by David Kelley – IDEO Founder)
Process of Social Innovation	Engage Community study and Issue Identification	 Reading assignments Handout on Community Study and Issue Identification Case Study on "EGramSeva" Case Study on "Janani Agri Serve" Class Presentations Initial observations being made by the group (Literature Survey of Places of Hubli- Dharwad) www.readwhere.co m 	 Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective

 2. Inspiration Plan for the Research Development of Interview guide Capture your Learnings 	Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge PEER REVIEW Reading assignments Handout on Overview of Inspiration Class Presentations Entirety of the Social Issue Identification of the Stake Holders (Examples on Fluoroscent Curtain and Students' Punctuality for Class) Interview Questions (Role Play on Interview with Stakeholders) Category wise	templates with the help of sample case study • Familiarization of the respective templates with the help of sample case study
3. Ideation	(Role Play on Interview with	• Familiarization of
3. Ideation3.1 SynthesisSearch for meaning	 Reading assignments Handout on Overview of Ideation- Synthesis 	 Familiarization of the respective templates with

•	Create "How might	Cla	ass Presentations		the help of
	we" question	•	Create insights		sample case study
		•	"How might we"		
			questions		
		Us	se template 5: Create		
		In	sights		
		Те	mplate 6: Create		
		"Н	low Might We'		
		Qı	uestions		
		_			
3.0) Ideation	Re	eading assignments	•	Brain storming
	3.2 Prototyping	•	Handout on	•	Familiarization of
			Overview of Ideation-		the respective
•	Generate Ideas		Prototyping		templates with
•	Select Promising	Cla	ass Presentations		the help of
	Ideas	•	Story board-		sample case
•	Determine what to		demonstrating the		study
	prototype		possible solutions	•	Activity on Risk
•	Make your prototype		se template 7: Select		management
•	Test and get feedback	l -	ur best ideas	•	Activity on
			mplate 8 : Determine		Resource
		W	hat to prototype		management
					Structure building
					games
			PEER REVIEW		
4.0) Implementation	Re	eading assignments	•	Familiarization of
•	Create an action plan	•	Handout on		the respective
•	Community Partners		Overview of		templates with
	(if any)		Implementation		the help of
•	Budgeting &	Cla	ass Presentations		sample case
	Fundraising	•	Pilot implementation		study
1.	Peer to Peer		plan with required		
2.	· ·		resources and Budget		
3.	J		indicating stake		
4.	Donation		holders & their		
5.	Envelop Funding		engagement		
6.	•				
	Walkathons				

7. Conducting Yoga Classes (www.causevox.com / www.blog.fundly.com)		
 Duration Ethical concerns Launch your solution Feedback (Impact) 		
5.0 Reflect Reflection of the overall learning by the students	Reading assignments Handout on Overview of students Reflection Use template 9: Reflection on the Process Class Presentations Final Presentation- After Implementation	Familiarization of the respective templates with the help of sample case study

BACK

Program: Bachelor of Engineering			Semester - I			
Course Title: Applied Physics Lab		Course Code: 21EPHP101				
L-T-P: 0-0-1		Credits: 1	Contact Hrs.: 02 Hrs/Week			
ISA Marks: 80		ESA Marks: 20	Total Marks: 100			
Teaching Hrs:		Tutorial/Practical: 28hrs	Exam Duration: 3 Hrs.			
Experiments						
1.	Four probe method					
2.	V-I characteristics of p-n junction diode					
3.	Zener diode characteristics					
4.	Hysteresis loss					
5.	Transistor characteristics					
6.	Measurement of dielectric constant					
7.	Resonance frequency of LCR circuits					
8.	Study of frequency response of passive components					
9.	Calibration of thermocouple					
10.	Calibration of electrical meters					

BACK

II Semester

ii Seiliestei								
Pro	Program: Bachelor of Engineering Semester - II							
Course Title: Multivariable calculus Course Code:				e: 18EMAB102				
L-T-P: 4-1-0		Credits: 05	Contact Hours: 6hrs/week					
ISA Marks: 50		ESA Marks: 50	Total Marks: 100					
Tea	ching Hours: 50	Tutorial/Practical: 28hrs	Exam Duration: 3hrs					
		Unit-I						
	Partial differentiation: F	unction of several variables,	Partial derivatives, Level					
1	curves, Chain rule, Errors and Approximations. Extreme value problems.							
	Lagrange's multipliers.							
	Double integrals: Double integrals- Rectangular and polar coordinates, Change							
2	the order of integration.	Change of variables, Jacobia	an. Application of double	08 hrs				
2	integrals							
	Matlab: optimization problems, application of double integrals							
		Unit-II						
	Triple integrals: Triple integrals, Cartesian, change to Cylindrical and Spherical							
3	3 coordinates Application of Triple integrals							
	Calculus of Vector Fields	s: Vector fields, Gradient an	d directional derivatives.					
	Line and Surface integrals. Independence of path and potential functions.							
4	Green's theorem, Divergence of vector field, Divergence theorem, Curl of							
	vector field. Stokes theorem.							
	Matlab: application of Triple integrals, Vector calculus problems							
		Unit III						
	•	of higher orders: (a) Linear	•					
	second and higher order with constant coefficients The method of Variation of							
	parameters. Initial and boundary value problems.							
5	(b) Applications of second order differential equations-Newton's 2 nd law, electrical circuits, Simple Harmonic motion. Series solution of differential							
	equations. Validity of Series solution of Differential equations.							
	Matlab: application of differential equations							
Tex	Text Books :							
	1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010							
Reference Books:								

- 1. Hughues- Hallett Gleason, Calculus Single and Multivariable, 4ed, Wiley India, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

BACK

Pro	Program: Bachelor of Engineering Semester - II			
Coi	urse Title: Engineering	Course Code: 22ECHB102		
L-T	L-T-P: 3-0-0 Credits: 03 Contact Hours: 3hrs/we		ek	
ISA	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Tea	ching Hours: 40	Tutorial/Practical:	Exam Duration: 3hrs	
		Unit-I		
	Chemical Bonding:	Introduction, Ionic bond, fa	actors influencing the	
	_	ond: Ionization energy. Elec	_	
		ties of Ionic compounds. Coval	•	
	theory & Molecular Or	bital theory – formation of hyd	lrogen molecule, factors	
1	-	tion of covalent bond, polar	_	04 hrs
	bond, dipole momen	it, problems on calculation of	of percentage of Ionic	
	character and prope	erties of covalent compound	ds, Co-ordinate bond:	
	formation of hydroniu	m ion and ammonium ion.		
	Electrochemical Ener	gy Systems: Electrode poter	ntial, Nernst equation,	
	formation of a cell; Ref	ference electrodes – Calomel e	lectrode, Determination	
2	of electrode potential, numerical problems on E, E _{cell} & E ⁰ _{cell} .			
	Batteries: Classification, Characteristics, Lead - acid, Lithium ion battery. Fuel			
	cells - Methonol-O₂ fuel cell.			
	Polymers: Introduction	n, polymerization; mechanism	of polymerization taking	
	ethylene as an examp	le. Determination of molecula	r weight of a polymer –	
3		Commercial polymers - Plexi g		06 hrs
	Polymer composites: Carbon fiber and Epoxy resin – synthesis, properties			00 1113
	and applications. Introduction to conducting polymers, mechanism of			
	conduction in poly acetylene and applications.			
		Unit-II		
		ntroduction, technological imp	. 0,	
	Principles of electroplating. Factors affecting nature of electrodeposit,			
4				04 hrs
	process of gold by acid cyanide bath. Electro less plating, advantages of			
	electro less plating over electroplating. Electro less plating of Cu and its			
	application in the man			
		troduction, physical and chemi	• •	
_	Purification of silicon; chemical vapor deposition (CVD) process, zone refining			
5	process. Crystal growth; preparation of single crystal silicon by Czhochralski crystal pulling technique – numerical problems. Crystal slicing and wafer			09 hrs
		que – numericai problems. C	rystal slicing and wafer	
	preparation.			

	Fabrication process: thermal oxidation, diffusion, ion implantation –				
	numerical problems, epitaxial growth, masking and photolithography, wet				
	etching, dry etching.				
	Material Chemistry: Liquid Crystals – Types of liquid crystals, applications of				
6	Liquid Crystal in Display system.	03 hrs			
"	Fluorescence and Phosphorescence – Jablonski diagram, Thermoelectric and	03 1113			
	Piezoelectric materials – meaning, properties and applications				
	Unit-III				
	Instrumental methods of measurement: Advantages over conventional				
	methods. Electro analytical methods: Potentiometer - principle, methodology				
7	and applications. Optoanalytical methods: Colorimeter - Principle,	04 hrs			
′	methodology and applications.	041113			
	Spectral methods of analysis: UV – Spectrophotometer - Instrumentation				
	and applications				
	Environmental Chemistry: Water: Sources and ill effects of water pollutants				
	- fluoride and nitrate; determination of total hardness of water by EDTA				
8	method – numerical problems. ,	04 hrs			
•	Sewage: Determination of Biological Oxygen Demand by Winkler's method –	041113			
	numerical problems and determination of Chemical Oxygen Demand –				
	numerical problems.				

- 1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand & Co. Ltd., 2009, New Delhi.
- 2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat Rai Publications, 2006, New Delhi

Reference Books:

- 1. Text book of Inorganic Chemistry, P.L.Soni, Sultan Chand, 1999, New Delhi.
- 2. Hand book of batteries, David Linden, Thomas B Reddy, 3rd edition Mc Graw Hill publications, 2001, New York.
- 3. Polymer Science, 6th Edition, Gowariker V.R., Viswanathan N.V., Sreedhar J., New Age International (P) Ltd, 2007, New Delhi.
- 4. Solid State Devices& Technology, 4thEdition, V.Suresh Babu, sanguine Technical Publishers, 2005, Bangalore.
- 5. Material Science & Engineering: An Introduction, 9th Edition, Calister William D, John Wiley and sons, 2007, New York.
- 6. Instrumental methods of Chemical nalysis, 5th Edition, Gurudeep R Chatwal, Shan K Anand, Himalaya Publishing House Pvt. Ltd, 2010, Mumbai.
- 7. VLSI Technology, 2nd Edition, S.M.Sze, McGraw Hill Series in electrical and computer engineering, 1998, New York.

BACK

Program: Bachelor of Engineering Semester - II			
Course Title: Problem Solving with Data Structures Course Code: 18ECS			SP102
P: 0-0-3	Credits: 3	Contact: 6 hrs/wee	ek
Marks: 80	ESA Marks: 20	Total Marks: 100	
ching hrs :	Tutorial/Practical: 84hrs	Exam Duration: 3 H	Irs
Pointers, Structures an	d Files		
Recap of basics: Point	ters ,Structures; Self-referential s	tructures, dynamic	12 hrs
memory management	Files – File manipulation programs	5	
Stacks and Recursion			
Stack: Definition, Opera	ations, Stack ADT Implementation	of stack operations.	16 hrs
Applications of stack.			
Recursion- Need for Recursion and problems on Recursion.			
Queues			
Queue: Definitions of Linear, Circular queues, Queue ADT Linear and circular			
queue operations Definition and working of Priority queue, Double ended			
queue; Applications of queues.			
Lists			
Concept of lists and dynamic memory management lists, definitions and			18 hrs
representations: singly, doubly, circular lists. Dynamic Implementation of lists			10 1113
and its operations, Applications of linked lists			
Binary trees			
Binary Tree: Definition, Terminology and representation, Tree Traversals both			16 hrs
recursive and iterative.	Binary Search Tree and its applica	tions.	
	rse Title: Problem Solvin P: 0-0-3 Marks: 80 ching hrs: Pointers, Structures and Recap of basics: Point memory management Stacks and Recursion Stack: Definition, Operate Applications of stack. Recursion- Need for Recursion- Need for Recursion- Need for Recursion- Need for Recursions of Lists Concept of lists and descriptions of Lists	Credits: 3 Marks: 80 ESA Marks: 20 Ching hrs: — Tutorial/Practical: 84hrs Pointers, Structures and Files Recap of basics: Pointers ,Structures; Self-referential sememory management Files — File manipulation programs Stacks and Recursion Stack: Definition, Operations, Stack ADT Implementation Applications of stack. Recursion- Need for Recursion and problems on Recursion Queues Queue: Definitions of Linear, Circular queues, Queue ADT queue operations Definition and working of Priority queue; Applications of queues. Lists Concept of lists and dynamic memory management list representations: singly, doubly, circular lists. Dynamic Impland its operations, Applications of linked lists Binary trees Binary Tree: Definition, Terminology and representation, Terminology and Te	rse Title: Problem Solving with Data Structures Course Code: 18ECS C: 0-0-3 Credits: 3 Contact: 6 hrs/wee Marks: 80 ESA Marks: 20 Total Marks: 100 Ching hrs: Tutorial/Practical: 84hrs Exam Duration: 3 h Pointers, Structures and Files Recap of basics: Pointers ,Structures; Self-referential structures, dynamic memory management Files — File manipulation programs Stacks and Recursion Stack: Definition, Operations, Stack ADT Implementation of stack operations. Applications of stack. Recursion- Need for Recursion and problems on Recursion. Queues Queue: Definitions of Linear, Circular queues, Queue ADT Linear and circular queue operations Definition and working of Priority queue, Double ended queue; Applications of queues. Lists Concept of lists and dynamic memory management lists, definitions and representations: singly, doubly, circular lists. Dynamic Implementation of lists and its operations, Applications of linked lists Binary trees

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- 3. Data Structures Through C -- Yashavant P Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

BACK

Program: Bachelor of Engineering Semester - II			
Course Title: Engineering Exploration Course Code: 22EC			CRP101
0-0-3	Credits: 3	Contact Hrs.: 6hrs	/week
larks: 80	ESA Marks: 20	Total Marks: 100	
ing Hrs:	Tutorial/Practical: 84hrs	ESA Exam Duratio	n: 3 hrs
	Content		Sessions
Introduction to Engineering and Engineering Study			1
Role of Analysis in Engineering, Analysis Methodology 2			2
Data Analysis Graphing			2
Basics of Engineering Design, Multidisciplinary Nature of Engineering Design			5
			1
Sustainability in Eng	gineering		2
Ethics			1
Modeling, Simulation and Data Acquisition using Software Tool			1
Platform based development : Arduino			3
Course Project			3
	e Title: Engineering E 0-0-3 arks: 80 ing Hrs: Introduction to Eng Role of Analysis in E Data Analysis Graph Basics of Engineerin Design Project Managemer Sustainability in Enge Ethics Modeling, Simulation Platform based dev	e Title: Engineering Exploration O-O-3 Credits: 3 arks: 80 ing Hrs: Tutorial/Practical: 84hrs Content Introduction to Engineering and Engineering Student Role of Analysis in Engineering, Analysis Methodo Data Analysis Graphing Basics of Engineering Design, Multidisciplinary Nathologism Project Management Sustainability in Engineering Ethics Modeling, Simulation and Data Acquisition using Students Platform based development: Arduino	e Title: Engineering Exploration Course Code: 22EG 0-0-3 Credits: 3 Contact Hrs.: 6hrs, arks: 80 ESA Marks: 20 Total Marks: 100 ing Hrs: Tutorial/Practical: 84hrs ESA Exam Duratio Content Introduction to Engineering and Engineering Study Role of Analysis in Engineering, Analysis Methodology Data Analysis Graphing Basics of Engineering Design, Multidisciplinary Nature of Engineering Design Project Management Sustainability in Engineering Ethics Modeling, Simulation and Data Acquisition using Software Tool Platform based development: Arduino

Reference Books:

- 1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter No	Name	Weightage in percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10
5	Basics of Engineering Design	
	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using Software	
	Tool	-
10	Platform Based Development: Arduino	-
10	Course Project	40

BACK

Program	n: Bachelor of Engin	eering	Semester - II	
Course	Course Title: Basic Electronics		Course Code: 18EECF101	
L-T-P: 4-0-0		Credits: 4	Contact Hours: 4 Hrs/v	week
ISA Ma	rks: 50	ESA Marks: 50	Total Marks: 100	
Teachir	ng Hrs: 50	Tutorial/Practical:	Exam Duration: 3 Hrs.	
	Unit-l			
	Trends in Electron	ic Industries: Introduction, F	Roadmap of electronic	
	sector, scope and o	pportunities in various segme	ents of electronics (i.e.,	
1	Consumer, Telecom	n, IT, Defense, Industrial, Med	ical and Automobiles),	03 hrs
	Government and	private sectors, Growth	profile of Electronic	
	industries, Standard	ds and PoliISAs, Electronic Sys	tem Components.	
	Basic Components	s, Devices and Applications	: Diode: PN junction	
	characteristics; mod	deling as a circuit element, ide	eal and practical diode.	
2	AC to DC converter	r: Half wave and full wave re	ctifier (centre tap and	10 hrs
_	bridge), capacitor	filter and its analysis, nume	rical examples. Zener	10 1113
	diode and its applications (Voltage reference and voltage regulator).			
	Realization of simple logic gates like AND and OR gates.			
		nsistor voltages and currents,		
	bias, Collector base bias, Voltage divider bias, CE configuration). DC load			
3	line. Voltage, current and power gains. Transistor as a switch: NOT Gate,			07 hrs
	Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single			
	Stage and Two Stag	e RC-coupled Amplifier).		
		Unit-II		
		per systems: Decimal, Binary, (
		Conversions, Binary Ope		
		ry number systems. Logic gate	•	
_		ng basic gates (AND, OR, N		446
4		NAND, NOR). Boolean alg		14 hrs
	'	gan's Theorems, simplification		
		Use of Karnaugh Maps t		
	Expressions (2 Variables, 3 Variables and 4 Variables), Design of Half Adder and Full Adder, Parallel Adder using full adders.			
		ifier: OPAMP characteristics		
	_ ·	ear applications: Inverting ar		
5		ear applications. Inverting at follower, Integration, D	-	06 hrs
			inerentiation, Adder,	
Subtractor, ZCD and Comparator. Unit-III				
	Communication S	ystems: Basic block diagra	m of communication	
6		modulation. Amplitude mod		07 hrs
	, , , , , , , , , , , , , , , , , , , ,			

	description, Frequency-Domain description. Generation of AM wave:	
	square law modulator. Detection of AM waves: envelope detector.	
	Double side band suppressed carrier modulation (DSBSC), Generation	
	of DSBSC wave : balanced modulator, Super heterodyne principle.	
	Linear Power Supply, UPS & CRO: Working principle of linear power	
7	supply, UPS and CRO. Measurement of amplitude, frequency and phase	03 hrs
	of a given signal.	

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References:

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design , 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. BoylesteadNashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

BACK

Program: Bachelor of Engineering				Semester - II	
Course Tit	le: Basic Mechai	nical Engineering		Course code: 22EMEF101	
L-T-P: 2-1-0 Credits: 3				Contact Hrs: 4hrs/week	
ISA Marks	: 50	ESA Marks: 50		Total Marks: 100	
Teaching H	Hrs: 30	Tutorial/Practical: 28	8hrs	Exam Duration: 3 hrs	
Chapter	C	ontents	Hours	Tutorial	Sessions
		UNIT I			
	Introduction	to Mechanical		Visit to Workshop	
	Engineering:			and Machine Shop,	
	Definition	of engineering,		Tools, Safety	
4	Mechanical En	gineering, Branches	_	Precautions	
1	of Mechanical	Engineering, Who	2	Video presentations	1
	are Mecha	nical Engineers?,			
	Mechanical E	ngineers' top ten			
	achievements.				
	Manufacturing Engineering: Basics			Demonstration on	
	of Manufacturing			working of Lathe,	
	What is manufacturing?, The main			milling, drilling,	
	manufacturing sectors, The			grinding machines	
	importance of the main			Demonstration on	
	manufacturing sectors to the Indian			Welding (Electric	
2	economy, Scale	s of production	8	Arc Welding, Gas	5
	Classification	of manufacturing		Welding, Soldering)	
	Processes.			Demonstration and	
	Advances in Manufacturing: CNC			Exercises on Sheet	
	machines, Mechatronics and applications			metal work.	
				Visit to Learning	
				Factory	
		UNIT II			
	Design Eng	ineering: Power		Design Problems	
	Transmission E	lements		like a moving	
	Overview			experience,	
	Design Applicat	tion:		aluminium can	
3	Belt Drives.	Types, Length of Belt.	6	crusher	5
	Velocity Ra	tio, Initial Tension.		Video presentations	
	Ratio of	Tensions. Power			
	Transmitted	, Numerical			
	Problems.				

	• Gears. Spur Gear, Rack and			
	Pinion, Worm Gear, Bevel Gear,			
	Helical Gears. Speed, Torque, and			
	Power in Gear pair. Simple and			
	Compound Gear trains.			
	Numerical Problems.			
	• Ball and Roller Bearings, Types,			
	Applications.			
	Thermal Engineering 1: Prime		Case study on	
	Movers.		power requirement	
	Internal Combustion Engines:		of a bike, car or any	
	Classification, IC engine parts, 2		machine	
	stroke SI and CI engine, 4 Stroke SI		Video presentations	
4	and CI Engine, PV diagrams of Otto	4		1
	and Diesel cycles, Comparison of 2			
	stroke and 4 stroke engine,			
	comparison of CI and SI engine,			
	Problems on Engine Performance,			
	Future trends in IC engines.			
	UNIT III			
	Thermal Engineering 2: Thermal		Case study on	
	Systems' Applications		selection of various	
	Refrigeration system, Air		thermal systems	
5	conditioning system, Pumps,	5	Video presentations	1
	Blowers and Compressors,			
	Turbines, and their working			
	principle and specifications.			

- 1. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, 2013- Cengage Learning.4
- 2. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma. A Text Book of Elements of Mechanical Engineering, 30th Edition, Oct 2010,—Subhash Publishers, Bangalore.

Reference Books:

- 1. Course Material developed by the Department of Mechanical Engineering.
- 2. SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology Vol I & II, 11th edition 2001, Media Promoters and Publishers.
- 3. Basic Manufacturing, Roger Timings, Third edition, Newnes, An imprint of Elsevier

BACK

Program: Bachelor of Engineering Semester - II				
Course	Course Title: Professional Communication Course Code: 15EHSH101			•
L-T-P: 1	-1-0	Credits: 2	Contact Hrs.: 3hrs/week	
ESA Ma	rks: 50	ISA Marks: 50	Total Marks: 100	
Teachin	g Hrs: 20	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
		Content		Hrs
1	Basics- English Communication: Course Introduction, Explanation of template mix-ups with correct usages & necessity of grammar in error detection, Usage of tenses			9 hrs
2	Vocabulary and grammar: Vocabulary, Word Formation and Active and Passive Voice			6 hrs
3	Bouncing Practice: Definition and types of bouncing and its practice with examples, reading skills, free style speech. Individual presentation.			6 hrs
4	Rephrasing and Structures: Comprehension and Rephrasing, PNQ Paradigm and Structural practice			8 hrs
5	Dialogues: Introduction of dialogues, Situational Role plays,			3 hrs
6	Business Communication: Covering letter, formal letters, Construction of paragraphs on any given general topic.			9 hrs
Referen		O		

References:

- 1. Collins Cobuild Advanced Learner's English Dictionary
- 2. Raymond Murphy Intermediate English Grammar, Cambridge University Press
- 3. Martin Hewings- Advanced English Grammar, Cambridge University Press.

BACK

Semester - III

Prog	gram: Bachelor of Engineer	Semester - III			
Cou	rse Title: Linear Algebra	Course Code: 24EMAB208			
L-T-F	P: 3-0-1	Credits: 4	Contact Hrs: 5hrs/wee	ek	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Tead	ching Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3 hrs		
		Unit – I			
1	Equations, An Example of	limination: Introduction, The Gaussian Elimination, Matres of Factors and Row Exchass and Applications.	ix Notation and Matrix	08 hrs	
2	Vector Spaces and Subspace: Solving Ax= 0, and Ax= b, Linear Independence, Basis, and Dimension, The Four Fundamental Subspaces, Graphs and Networks, Linear Transformations.			08 hrs	
Unit – II					
3	Orthogonality: Orthogonal Vectors and Subspaces, Cosines and Projections onto Lines, Projections, and Least Squares.		08 hrs		
4	Eigenvalues and Eigenvectors: Introduction to Determinants, Properties of the Determinant, Formulas for the Determinant, Applications of Determinants. Introduction, Diagonalization of a Matrix, Difference Equations and Powers Ak, Differential Equations and e ^{At} , Similarity Transformations.			08 hrs	
Unit – III					
5		s s, Minima, Maxima, and Sa gular Value Decomposition	addle Points, Tests for	08 hrs	

Text Books:

- 1. Linear Algebra and its Applications, Gilbert Strang , 4 Edition, Cengage India Private Limited 2005.
- 2. Linear Algebra and Its Applications, David C. Lay, 5th Edition Pearson -2023.

Reference Books:

- 1. Boyd, Stephen, and Lieven Vandenberghe. "Introduction to applied linear algebra: vectors, matrices, and least squares", Cambridge university press, 2018.
- 2. Linear algebra for computer science "Essential Mathematics for Computer Scientists" M. THULASIDAS, Singapore Management University, 2021.

Evaluation Scheme ISA

Assessment	Conducted for Marks	ISA Weightage
ISA1	30	38
ISA2	30	
Lab	40	25
Total	100	63

Evaluation Scheme ESA

Assessment	Conducted for Marks	ISA Weightage
ESA Theory	100	37
Exam		

BACK

Progra	am: Bachelor of Engi	neering	Semester - III	
Course	ourse Title: Discrete Mathematical Structures Course Code:24ECAC201			
L-T-P:	3-1-0	Credits: 4	Contact Hrs: 5hrs/week	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 40	Tutorial/Practical: 28hrs	Exam Duration: 3hrs	
		Unit –I		
	Logic and Proofs: Propositional Logic, Applications of Propositional Logic,			
1	Propositional Equiva	alences, Predicates and Quan	tifiers: Nested Quantifiers,	8 hrs
	Rules of Inference, I	ntroduction to Proofs.		
	Counting: The Basic	cs of Counting, The Pigeonho	le Principle, Permutations	
2	and Combinations	s, Generalized Permutatio	ons and Combinations,	8 hrs
	Generating Permuta	ations and Combinations		
Unit –II				
	Recurrence Relations: Applications of Recurrence Relations, Formulating			
3	Recurrence relations, Solving Linear and nonlinear Recurrence Relations,		ear Recurrence Relations,	8 hrs
	Generating Func	tions: recurrence relation	on, Inclusion–Exclusion,	
	Applications of Inclusion–Exclusion			
	Number Theory: Divisibility and Modular Arithmetic, Primes and Greatest			
	Common Divisors: F	Primes, Trial Division, The Siev	ve of Eratosthenes, Testing	
4	· '	uclidean Algorithm and gcd	,	8 hrs
•		es : Linear Congruences Chine	·	
	''	gruences: Hashing Functions,	Pseudorandom Numbers	
	and Check Digits.			
Unit –III				
5	Groups: Binary Operations, Semi groups, Monoid, Group, Abelian group		4 hrs	
	cyclic groups, rings and Products & Quotients of Semi Groups.			
6		, Finite fields of the form GF	(p), Polynomial Arithmetic	4 hrs
	and Finite fields of the form GF(2n)			

- 1. Kenneth H. Rosen, Kamala Krithivasan, Discrete Mathematics and its Applications, 8th Edition, Tata Mc-GrawHill Publication, July 30, 2021.
- 2. Kolman, Busby and Ross, Discrete Mathematical Structures, 6th Edition., Pearson Publication Mar 8, 2023.

Reference Books:

- 1. Grimaldi R.P. and Ramana B.V, Discrete and Combinatorial Mathematics- An Applied Introduction, 5th Edition, Pearson Publication, May 8, 2019.
- 2. Basavaraj S Anami and Venakanna S Madalli, Discrete Mathematics A Concept based approach, Universities Press, 2016

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7	5	Solve Any 1
""	Q.No8	6	Solve Ally 1

Tutorial Plan

SI. No	Topic	Number of slots
1.	Logic and Proofs	3
2.	Functions and Relations	2
3.	Counting	2
4.	Recurrence Relations	2
5.	Groups	2
6.	Number theory	1
7.	Programming: With C	2

Assessment Rubrics for Activities

SI No	Activity	Marks	PI	со	BL
1	Assignment on Discrete Structures (Group activity, Programming: C) Evaluations: 1. Proofs and Logic 2. Counting 3. Recurrence Relations 4. Programming 5. Groups	20	2.3.1	05	L3

Note:

- Activities are based on discrete structures and programming assignment.
- Each evaluation will carry 10 marks. Best 04 evaluations will be considered.

	Rubrics for Activity			
Parameter	Outstanding (8-10 Marks)	Effective (5-7 Marks)	Adequate (1-4 Marks)	
Understanding the problem	Specified clearly all assumptions, variables, entities and discrete structures	Specified clearly most of the assumptions, variables, entities and discrete structures	Specified few assumptions, variables, entities and discrete structures	
Logic/ Model Design	Establish relationship between possible inputs, outputs and outcomes	Establish relationship between most of the inputs, outputs and not specified outcomes	Establish relationship between few inputs, outputs and not specified outcomes	
Problem solving/Imple mentation • Apply discrete mathematical operations / implement all functions to solve the problem. • Provide solution/ output for all legitimate inputs		 Apply discrete mathematical operations / implement most of the functions to solve the problem. Provide solution/ output for most of the legitimate inputs 	 Apply discrete mathematical operations / implement few functions to solve the problem. Provide solution/ output for few of the legitimate inputs 	

BACK

Progra	am: Bachelor of Enginee	ring	Semester - III	
Course	Course Title: Computer Organization and Architecture CourseCode:24ECA		C202	
L-T-P:	3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA M	arks: 63	ESA Marks: 37	Total Marks: 100	
Teach	Feaching Hrs: 40 Tutorial/Practical: 28hrs Exam Duration: 3 hrs		rs	
		Unit –I		
	Computer Fundament	tals: Basic Concepts and Co	omputer Evolution:	
	Organization and Archi	tecture, Structure and Functio	n, A Brief History of	
	Computers, The Evolu	ition of the Intel x86 Archit	ecture, Embedded	
	Systems			
1	Performance Issues: Tv	vo Laws that Provide Insight:	Ahmdahl's Law and	04 hrs
_	·	sures of Computer Performar	nce, Calculating the	• • • • • • • • • • • • • • • • • • • •
	Mean, Benchmarks and	•		
	•	mputer Function and Intercor	·	
		er Function, Interconnectio	n Structures, Bus	
	Interconnection, Point-			
	• •	lemory: Computer Memory	•	
	Cache Memory Principles, Elements of Cache Design, Semiconductor		061	
2	Main Memory, DDR DR		Dua	06 hrs
	, , ,	al Devices, I/O Modules,	Programmed 1/O,	
	Interrupt-Driven I/O, D	ng Unit: Instruction Sets: (haracteristics and	
		truction Characteristics, Types		
3	of Operations	traction characteristics, Types	or operands, types	06 hrs
	Instruction Sets: Addressing Modes and Formats: Addressing Modes,		Addressing Modes	00 1113
	Instruction Formats, As	=	rtaaressing meaes,	
		Unit –II		
	The Processor: Pro		nction: Processor	
	Organization, Register	Organization, Instruction	Cycle, Instruction	
4	Pipelining	_		08 hrs
	Instruction-Level Para	llelism and Superscalar Pro	cessors: Overview,	
	Design Issues, Intel Co	re Microarchitecture		
	Parallel Organization	n: Parallel Processing: N	Iultiple Processor	
	Organizations, Symme	tric Multiprocessors, Cache (Coherence and the	
5	MESI Protocol, Multith	reading and Chip Multiprocess		08 hrs
	·	: Hardware Performance	•	20 111 0
		Iulticore Organization, Hetero	geneous Multicore	
	Organization.			

	Unit –III			
6	General-Purpose Graphic Processing Units: Cuda Basics, GPU versus CPU,	04 hrs		
"	GPU Architecture Overview	041113		
7	Control Unit Operation: Micro-Operations , Control of the Processor , Case			
'	studies and Projects	04 hrs		

1. William Stallings, Computer Organization and Architecture Designing for Performance, 10th Ed, Pearson Education, 2016.

Reference Books:

- 1. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5th Edition, Elsevier publication, 2017.
- 2. Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata McGraw Hill 2008

Laboratory Plan

SI.	Experiment/ Job details	No. of Lab	
No.		sessions/batch	
1.	Logisim Tool Demo	01	
2.	Combinational Circuits (Half Adder, Full Adder, Decoder,	01	
	Multiplexer)	01	
3.	Building ALU	01	
4.	Building ALU(contd)	01	
5.	1-bit RAM Cell and building bigger RAM	01	
6.	1-bit RAM Cell and building bigger RAM(contd)	02	
7.	Design and simulation of main memory organization	01	
8.	Design and simulation of main memory organization(contd)	01	
9.	Design and simulation of register organization	02	
10.	Design and simulation of datapath for processor design.	01	
11.	Design and simulation of datapath for processor design	01	
	(contd)	01	
12.	Comparative study of contemporary processors	01	

Evaluation Scheme ISA

Assessment	Conducted for Marks	ISA Weightage
ISA1	30	38
ISA2	30	
Lab	40	25
Total	100	63

Evaluation Scheme ESA

Assessment	Conducted for Marks	ISA Weightage
ESA Theory	100	37
Exam		

BACK

Program: Bachelor of Engineering		Semester - III	
Course Title: Design and Analysis of Algorithms		Course Code: 24ECAC203	
L-T-P: 4-0-0	L-T-P: 4-0-0 Credits: 4		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 Tutorial/Practical:		Exam Duration: 3 hrs	
Clusters			

Clusters				
1	Foundations: Design Philosophy and Intuitions, Space and Time Complexities,			
1	Order of an Algorithm, Problem patterns: Recursion, Iteration, Backtracking	06 hrs		
2	Computing Principles and Tools: Pruning, Edge Relaxation, Sets, Traversals,	04 hrs		
	Prefix and Suffix, Union-Find, Hashing and Other Principles			
	Structured Data Management: Graphs and Trees, Binary Search Trees, Tries,			
3	AVL Trees, 2-3 Trees, Red-Black Trees, DFS, BFS, Heap, Array Query, Spare			
	Table, Segment Trees, Fenwick Trees, Skip Lists			
4	Sorting and Searching: Sorting and Searching Devices	06 hrs		
5	Graph Algorithms: Shortest Path and Spanning Trees	15 hrs		
6	Problem Assortments: Problem types, Undecidability, Limitations of	04 hrs		
	Algorithm Power	04 1113		

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Fourth Edition, The MIT Press, 2022.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education India; 3rd edition, 2007.
- 2. Antti Laaksonen, Competitive Programmers Handbook, 2018
- 3. Bjarne Stroustrup, C++ Programming Language, Addison-Wesley Educational Publishers Inc; 4th edition.

Scheme for End Semester Assessment (ESA)

8 Questions to be set of 20	Chapter	Instructions
Marks Each	Numbers	ilisti actions
Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
Q.No7	6	
		Solve Any 1
Q.No8	6	
	Marks Each Q.No1, Q.No2, Q.No3 Q.No4, Q.No5, Q.No6 Q.No7	Marks EachNumbersQ.No1, Q.No2, Q.No31,2,3Q.No4, Q.No5, Q.No64,5Q.No76

BACK

Progra	am: Bachelor of Engineeri	ng	Semester - III	
Course Title: Database Management System Cour		Course Code: 22ECAC204		
L-T-P: 4-0-0 Credits: 4 Contact Hrs: 4 l		Contact Hrs: 4 hrs/we	eek	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100		
Teach	ing Hrs: 50	Tutorial/Practical:	Exam Duration: 3 hrs	
		Unit −I		
	Introduction and ER Mod	del: Introduction to DBMS; D	Oata Models, Schemas	
	and Instances; Three-Sc	hema Architecture; Databa	ase Languages; Using	
	High-Level Conceptual I	Data Models for Database	Design; An Example	
1	Database Application; I	Entity Types, Entity Sets, A	Attributes and Keys,	06 hrs
	Relationship Types, Rela	ntionship Sets. Roles and S	tructural Constraints;	
	Weak Entity Types; Re	efining the ER Design; EF	R Diagrams, Naming	
	Conventions and Design	Issues.		
	Relational Data Mode	l and Relational Algebra	a: Relational Model	
	Concepts; Relational Model Constraints and Relational Database Schemas;			
_	Update Operations and dealing with constraint violations; Unary			08 hrs
2	Relational Operations: SELECT and PROJECT; Binary Relational Operations:			00 1113
	CARTESIAN PRODUCT, JOIN: Additional Relational Operations; Relational			
	Database Design Using ER- to-Relational Mapping.			
	SQL: SQL Data Definition	and Data Types; SQL cons	traints; DDL and DML	
3	statements; JOIN			08 hrs
	operations; Complex SQ	_ Queries, PL/SQL.		
Unit –II				_
	Database Design: Informal Design Guidelines for Relation Schemas;			
4	Functional Dependencies; Normal Forms Based on Primary Keys; Boyce-			09 hrs
	Codd Normal Form.			
	Introduction to Transa	ction Processing: Introdu	ction to Transaction	
5	Processing; Transactions	and System concepts; De	esirable Properties of	09 hrs
3	Transactions; Characte	on- Recoverability,	33 3	
	Serializibilty.			

Unit –III			
	Concurrency Control Techniques:		
6	Introduction, Two-phase Locking Techniques for Concurrency Control,		
6	Dealing with Dead-lock and Starvation, Concurrency control based on	05 hrs	
	Time stamp Ordering.		
	Database Security:		
7	Introduction to DB Security Issues, Discretionary Access Control,	05 hrs	
7	Mandatory Access Control And Role-Based Access Control, SQL Injections,	05 1118	
	SQL Attacks		

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011.
- 2. Shashank Tiwari , Professional NOSQL, 1st Ed, Wrox, 2011.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Ed, McGraw Hill, 2007.
- 2. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	7	33.737.11,72

BACK

Program: Bachelor of Engineeri	Semester - III	
Course Title: Database Applica	Course Code: 22ECAP201	
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks:20	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42hrs	Exam Duration: 3 hrs

List of experiments/jobs planned to meet the requirements of the course.

4- Demonstration	 Introduction to RDBMS/Case study/ basic SQL commands.
	 Set theory, logical operators and aggregate functions.
	 Group by, Having clause, Views and index
	Basics of PL/SQL.
5-Exercises	SQL queries on set theory, logical operators and join
	operations.
	 SQL queries queries on aggregate functions, group by
	and having clause.
	 SQL queries on Views and nested query operations.
	 PL/SQL queries using triggers and cursors.
	 PL/SQL queries using procedures and functions.
3-Structured Enquiry	Database Design
1-Open Ended	Database design & implementation
Experiment	

Text Book:

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 7th edition, Pearson Education, 2012.
- 2. Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition , O'Reilly Media,2014.

References:

- 1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 2. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

Internal Semester	Assessment	Weightage in Marks
Assessment (80%)	Exercises	50
	Structured Enquiry	20
	Open Ended Experiment	10
End Semester Assessment (20%)	ESA	20
	Total	100

BACK

Program: Bachelor of Engineering		Semester - III	
Course Title: Algorithms Lab		Course Code: 24ECAP202	
L-T-P: 0-0-2 Credits: 2		Contact Hrs: 4 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs:	Tutorial/Practical: 56hrs	Exam Duration: 03	

SI. No.	Experiment	No. of Slots
1	Objected Oriented Programming Using C++ Basics	2
2	Introduction and Efficiency Analysis	1
3	Trees	1
4	Structured Data Management	1
5	Searching and Sorting	1
6	Graph Algorithms	2
7	Project Work	6

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Fourth Edition, The MIT Press, 2022.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education India; 3rd edition, 2007.
- 2. Antti Laaksonen, Competitive Programmers Handbook, 2018
- 3. Bjarne Stroustrup, C++ Programming Language, Addison-Wesley Educational Publishers Inc; 4th edition.

Evaluation Scheme

Sl. No.	Experiment	Marks
1	Exercise	20
2	Structured Inquiry	30
2	Project Work (ISA – 30, ESA - 20)	50
	Total	100

BACK

Program: Bachelor of Engineering Semester			Semester - III		
Course Title: Corporate Communications (AUDIT)			Course Code: 24EHSA201		
L-T-P: 0-0-0 Credits: 0		Credits: 0	Contact Hrs: 1 hr/we	eek	
ISA M	arks: 100	ESA Marks: NA	Total Marks: 100		
Teach	ing Hrs: 16	Tutorial/Practical:	Exam Duration: NA		
		Unit –I			
	Communication Skills:	Tools of Communicatio	n, Listening, Body		
	Language, Common Po	stures and Gestures, Ope	n and Closed Body		
1	Language, Body Langua	age to be used in Corpora	te Scenarios, Voice:	4 hrs	
	Pitch, Pace, and Pause, \	/erbal Language: Positive & I	Negative Vocabulary,		
	Corporate Conversations				
	Presentation Skills: Zero Presentation, Individual Presentations, and				
2	feedback, Making Presentations Interactive, Types of Questions, Taking			4 hrs	
	off and Signing off differently, Captivating your Audience, Corporate			71113	
	Presentations				
	Spoken English: Phonetic and Non-Phonetic Languages, Introduction to				
3	IPA, Sounds in English, Syllables, Word Stress, Rhythm, Pausing, and			4 hrs	
	Intonation				
		ulary Enhancement Strateg	,		
4	English, Grammar Impr	ovement Techniques, Diction	onary Usage, Similar	4 hrs	
	and Contradictory Words				
Text B	Text Books:				
	NA				

Reference Books:

- 1. Diana Booher Communicate with Confidence, Mc Graw Hill Publishers
- 2. Norman Lewis Word Power Made Easy, Goyal Publishers
- 3. Cambridge Advanced Learner's Dictionary, Cambridge University Press.

BACK

Semester - IV

Program: Bachelor of Engineering		Semester - IV		
Course Title: Probability & St		itatistics	Course Code: 24EMA	AB209
L-T-P: 3-1-0		Credits: 4	Contact Hrs: 5 hrs/w	eek
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100	
Teach	ning Hrs:50 hrs	Tutorial/Practical:	Exam Duration: 3 hrs	S
		Unit −I		
	Description of data	: Introduction: Data, Type	of Variables, mean,	
1	weighted mean, me	edian, mode, Quartiles, Varia	ance, Coefficient of	10 hrs
_	variation, skewness,	Histogram, Box plots, Norm	al Quantile-Quantile	10 1113
	plots			
2	Probability: Introduct	tion: Definition, Interpretation	of probability value,	06 hrs
	addition rule, multipl	ication rule, Bayes' rule. Baye	sian Classification.	00 1113
	Lab: Introduction to	Data handling and Data visua	lization (Histogram,	
3	Skewness, Boxplot,	QQ-norm, Measures of ce	ntral tendency and	08 hrs
	dispersion)			
	T	Unit –II		
		and Probability Distribution:	ŕ	
	simple Examples, Discrete and continuous random variables;			
4	Theoretical distributions: Binomial, Poisson, Normal Introduction to			07 hrs
			ribution, marginal	
	distribution, and covariance.			
	Statistical Inference I: Introduction: Sampling, SRSWR, SRSWOR, Cluster			
5	Sampling, Stratified Sampling, Basic terminologies of testing hypothesis, Confidence interval, Sample size determination, Hypothesis test for			09 hrs
	·	single and differences), using	• •	
	ļ · · · · · · · · · · · · · · · · · · ·	ribution, Testing of Hypothes	• •	
	means(single and dif		sis for proportions,	08 hrs
	means(single and un	Unit –III		
	Correlation and Reg	ression: Meaning of correlation	tion and regression	
6		tion, Linear regression (ANOVA	,	04 hrs
	linear regression, Log	•	approacily, waitipic	041113
			of attributes (m x n	
7	Statistical Inference II: Test for independence of attributes (m x n contingency table) Inference based on choice of suitable test procedure			04 hrs
	(Goodness of fit)			
	<u>'</u>	on with ANOVA approach, Mul	tiple Regression with	
	ANOVA approach		- I- 3 11-Q. 230.0	04 hrs
	1 1/1/2/2011			

- 1. Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 5th Edition, John Wiley and Sons
- 2. Probability and Statistics for Engineers and Scientists, Walpole, Myers, Myers, Ye, 9th edition, Prentice Hall
- 3. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

Reference Books:

- 1. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 2. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
- 3. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists

BACK

Program: Bachelor of Engineering		Semester - IV		
	Course Title: Microcontroller Programming and Interfacing Course Code:		Course Code: 24ECAC2	206
L-T-P: 1-0-2	-T-P: 1-0-2 Credits: 3 Tutorial/Practical: 5 hr		rs/week	
ISA Marks:	larks: 66 ESA Marks: 34 Total Marks: 100			
Teaching H	rs: 14	Tutorial/Practical: 56hrs	Exam Duration:	
		Unit –I	·	
1	Purpose Microcontroller: Microcontrollers and General Purpose Microprocessors, choosing a microcontroller, Introduction to AVR Microcontroller and Arduino Family. Simplified View of an AVR Microcontroller, Internal Architecture Introduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR.		4 hrs	
I/O AVR Time Delay: I/O Port Pins and their functions, Role of DDR/DDRx Registers in Input and output operations, Programming for I/O Ports, I/O Bit Manipulations, Delay Calculation of AVR,Timers/Counters, C Data Types.		5 hrs		
3	AVR Interrupt Programming: AVR Interrupts, Interrupts vs Polling, Interrupt Service Routine, Steps in executing an interrupt, Sources of		5hrs	

1. Mazidi, Muhammad Ali, Sepehr Naimi, and Sarmad Naimi. *The AVR microcontroller and embedded systems: using Assembly and C.* 2nd Ed., 2017.

Reference Books:

1. Hughes, John M. Arduino: a technical reference: a handbook for technicians, engineers, and makers. "O'Reilly Media, Inc.", 2016

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	ISA Weightage
Lab Assessment -1 Assembly	10	
Lab Assessment -2 Embedded C	20	33
Course project	40	
ISA	30	33
Total	100	66

End-Semester Assessment Scheme

Assessment	Conducted for marks	ESA Weightage
Course Project	40	34
Total	40	34

Lab Plan

S.No	Chapter and Topics	Activity	Lab slots
1	Chapter 1: Introduction to AVR assembly programming	Demonstration of Microchip AVR studio	1
2	AVR assembly programming	ALP on Data transfer Instructions	1
3	AVR assembly programming	ALP on Logical Instructions	1
4	AVR assembly programming	ALP on branch instructions	1
5	Assessment-1 Assembly Programming	Assessment on ALP programming	1
6	Chapter 2: AVR Embedded C programming for timers/counters Course Project Problem Discussion	Embedded C programming for timers	1
7	AVR Embedded C programming for timers/counters	Embedded C programming for counters	1
8	Interfacing Atmega32 with peripherals.	Interfacing LCD/KEYPAD/motors	1
10	Assessment 2 Interfacing with microcontroller		1
11	Course Project Review 2- Design		1
12	Course Project Intermediate demo	Assessment on Embedded C programming and Interfacing	1
13	Course Project	Implementation	1
14	Review on Course Project	Model demonstration by each team	1

BACK

Progra	Program: Bachelor of Engineering Semester - IV			
Cours	Course Title: Object Oriented Programming Course Co		Course Code: 24EC	AC207
L-T-P: 3-0-0 Credits: 3		Credits: 3	Contact Hrs: 3 hrs/	week
ISA M	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	Teaching Hrs: 40 Tutorial/Practical: Exam Duration: 3hrs		rs	
		Unit –I		
	Object Oriented Progr	ramming (OOP) Concepts ar	nd JAVA Language	
	Fundamentals: Introd	uction to OOP, Object O	riented Paradigm,	
1	Applications of OOP. Fe	eatures of JAVA, JVM, JDK, So	urce File Structure.	4 hrs
	Programming construc	ts and String Handling. Cla	ass Diagrams-UML	
	notations. Types of rela	tions between classes.		
	Classes and Objects: (Class Fundamentals, Declaring	objects, Assigning	
	object reference variab	les, Introducing methods, Co	nstructors, this key	
2	word, Garbage collection	n: The finalize method. A clos	er Look at Methods	6 hrs
2	and Classes: Overload	ing: Methods, Constructors.	Using objects as	01113
	Parameters, Returning	objects, Access control. Under	rstanding static and	
	final keywords. Introduc	final keywords. Introducing nested and inner classes.		
	Inheritance and Polymorphism: Inheritance: Basics, Usage of super key			
3	word, Method overriding, Dynamic method dispatch, Abstract classes, 6			6 hrs
	Object class.			
	Unit –II			
	Packages, Interfaces 8	&Exception handling: Packag	es and Interfaces:	
	Packages, Access prote	ction, Importing packages. In	terfaces. Exception	
4	Handling: Fundamental	s, Exception Types, Using try, c	atch, throw, throws	6 hrs
	and finally, Multiple	catch, Nested try stateme	nts, user defined	
	exceptions.			
		: Introduction, List Interface, L	·	
5		Set Implementation Classes, ⁻	The Map Interface,	4 hrs
	Map Implementation C			
	•	& Streams API: Function		
6	6 Functional interface, Bulk operations on collections. Basics of Streams,		6 hrs	
	Reduction operations, Iterators and Streams			
	T	Unit –III	,	
7		, key features, architecture, s	setting-up a Spring	4 hrs
	-	g data JPA, CRUD Operations.		
8	Design Patterns: Creati	onal, Structural and Behaviora	ıl design patterns.	4 hrs

Textbooks

1. Herbert Schildt, "The Complete Reference", 9th Edition, McGraw-Hill.

Reference Books

- 1. Kathy Sierra and Bert Bates, Head First JAVA, 2, O'Reilly Media.
- 2. Introduction to Java Programming, Liang Y D, Pearson, 7th Edition.

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
ISA-1	20
ISA-2	20
Activity (Design)	10
Total	50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	45&6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	,

BACK

Prog	Program: Bachelor of Engineering Semester - IV			
Course Title: Operating System Principles and Course Code: 20		Course Code: 24ECA	C208	
Programming				
L-T-P: 4-0-1 Credits: 5 Contact Hrs: 6 hrs.		Contact Hrs: 6 hrs/v	week	
ISA N	ISA Marks: 60 ESA Marks: 40 Total Marks: 100			
Teac	Teaching Hrs: 50 Tutorial/Practical: 28hrs Exam Duration: 3 Hr		rs	
		Unit –I		T
	Fundamentals of Pr	ocess: Operating System	n Functions and	
1	Characteristics, Process	Concept, Process Control and	d Operations, System	07 hrs
	Call, Inter Process Comm	nunication.		
	_	Concepts, Schedulers,		
2		Multithreading models and	Thread API, Thread	07 hrs
	library.			
	_	: Synchronization, Producer	•	_
3				06 hrs
	synchronization.			
Unit –II			ı	
_		ystem Model and Deadlo		
4	Methods for Handling Deadlocks, Deadlock Prevention, Deadlock			06 hrs
	· ·	Avoidance, Deadlock Detection, Recovery from Deadlock		
_	_	(File Types, File systems a		07 hrs
5	nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking.			07 hrs
		Memory management stra		
6		memory allocation, Paging		07 hrs
J	table, Segmentation.	memory anocation, raging	, structure or page	
	Unit –III			
	Virtual Memory Ma	nagement: Virtual Men	nory Management,	
7	-	ging, Page replacement.	iory management,	05 hrs
	Case study: Windows 10, Design Principles, System Components		ystem Components	
8	Influential Operating Systems: Macintosh Operating System and IBM		05 hrs	
	OS/360	,	<i>-</i>	
Tovt R	Books:			l .

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 10 ed., Wiley-India, 2018.
- 2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2013

Reference Books:

- 1. William Stallings, "Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

List of Experiments

Expt./Job	Experiment/job Details	No. of Labs.
No.		Session/s per batch
1.	Demonstrate the usage of process management API's	1
	viz fork, vfork, exec, exit.	
2.	Demonstrate Inter Process Communication (IPC) using	1
	PIPE / FIFO.	
3.	Implementation Critical Section Problem using	1
	Semaphore.	
	REVIEW -1	
4.	Demonstrate file related system calls OPENDIR,	1
	READDIR, and CLOSEDIR.	
5.	Implement cp commands of an operating system.	1
6.	Demonstrate file locking using 'fcntl' system call.	1
	REVIEW -2	
	Practice Programs	
7.	Implement FCFS/SJF scheduling algorithms	1
8.	Implement the conversion of a virtual address to a	1
	physical address.	
9.	Implement paging algorithms	1

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage	Weightage in Marks	
ISA-1 (Theory)	40			
ISA-2 (Theory)	40	80%	40	
Flipped Classroom	20			
Laboratory Assessment-1	40	200/	10	
Laboratory Assessment-2	40	20%	10	
Total		50		

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	100	50
	Total	50

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
Ш	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	

BACK

Program: Bachelor of Engineering Semester - IV				
Course Title: Principles of Compiler Design		Course Code:22ECAC209		
L-T-P:	T-P:3-1-0 Credits: 4 Contact Hrs: 5 hrs		/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teach	Teaching Hrs: 40 Tutorial/Practical: 28hrs Exam Duration: 0		Exam Duration: 03	hrs
Unit –I				
	Introduction to compilers: Brief History Of Compilers, Translation			
1	Process, Major Da	ta Structures In Compilers, Ch	nomsky Hierarchy,	06 hrs
	Lexical Analysis: Sc	anning Process, Regular Expres	ssions For Tokens,	00 1113
	Lexical Errors, Appli	cations Of Regular Expressions.		
	Finite Automata:	ntroduction: Language, Autom	ata, From Regular	
	Expressions To Deterministic Finite Automata (DFA): 6-			
2	Nondeterministic Finite Automata (E-NFA), NFA, DFA, DFA			06 hrs
	Optimization, Finite Automata As Recognizer, Implementation Of Finite			
	Automata			
	Introduction to Syntax Analysis: Introduction To Grammars, Context-			
3	Free Grammars (CF	Gs), Ambiguity In Grammars Ar	d Languages, Role	04 hrs
	Of Parsing.			
Unit –II				
4	Top Down Parsing: Introduction, Left Recursion, Left Factoring, LL (1)			08 hrs
	Parsing, FIRST And FOLLOW Sets, Error Recovery In Top Down Parsing.			
5	Bottom up Parsing: Introduction, SLR (1) Parsing, General LR (1) And		08 hrs	
	LALR (1) Parsing, Error Recovery In Bottom Up Parsing.			
Unit –III				
6	Semantic Analysis: Attributes And Attributes Grammars, Algorithm For		04 hrs	
	Attribute Computation, Symbol Table, Data Types And Data Checking.			
	Intermediate Code Generation: Intermediate Code And Data Structure			
7	For Code Generation, Code Generation Of Data Structure References,			04 hrs
	Code Generation Of Control Statements.			
Text Book:				

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2011.
- 2. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.

- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Implementation of lexical analyser using LEX tool.	02
5	Implementation of syntax analyser using YACC tool.	02
6	Top down parsing	01
7	Bottom up parsing	01
8	Implementation of parsing algorithms using C	02
	language	

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
1	Q.No1, Q.No2, Q.No3	1, 2 ,3	Solve Any 2
П	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
	Q.No7	6	Solve Any 1
III	Q.No8	7	30IVE AIIY I

BACK

Program: Bachelor of Engineering		Semester - IV			
Course Title: Exploratory Data Analysis		Course Code: 24ECAC210			
L-T-P: 2-0-2		Credits: 4	Contact Hrs: 6 hrs/week		
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 30	Tutorial/Practical: 56hrs	Exam Duration: 2 Hrs		
Unit –I					
	Data Description and Preprocessing: Ecosystem for data science, Types of				
1	data, statistical descriptions of data, data visualization. Data cleaning, data			10 hrs	
	integration, data reduction, data transformation.				
2	Supervised Learning: Regression: Basic Concepts, Regression: Linear and				
_	Logistic, Evaluation n	netrics: R2score, MSE, RMSE,	MAE	5 hrs	
	Unit –II				
Supervised Learning: Classification: Naive Bayes, K-Nearest Neighbors					
3	(KNN), Model evaluation and selection: Accuracy, Precision, Recall,			8 hrs	
3	Sensitivity, Specificity, F-Score, Techniques to improve classification			61113	
	Accuracy-Ensemble methods: Bagging, Boosting, AdaBoost.				
4	Clustering: Partition	ning-based: K-Means, K-	Medoids, Hierarchical	7 hrs	
-	clustering: Agglomerative, Density-based clustering: DBSCAN.			7 1113	

Reference Books:

- 1. Wes McKinney, Python for Data Analysis, 3rd Edition, O'Reilly Media, 2022 (Early Release).
- 2. Suresh Kumar Mukhiya, Usman Ahmed, Hands-On Exploratory Data Analysis with Python: Perform EDA techniques to understand, summarize, and investigate your data, Packet Publishing Limited, 27 March 2020.
- 3. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann, 2012.

Scheme of Evaluation

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	25
ISA-2 (Theory)	30	23
Lab assessments	75	25
	Total	50

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	25
Lab	25	25
	Total	50

Lab Schedule

S.No	Chapter and Topics	Activity	Lab slots
1	Revisit of Python basics, Numerical and vectorized computing data manipulation Watch: Home Assignment From Couch to Jupyter: A Beginner's Guide to Data Science Tools & Concepts WiDS Worldwide	Demonstration on python basics. Demonstration on scientific libraries	1
2	Chapter 1: Data Preprocessing	Demonstration on Data Description: - Count, Pie plot, Histogram, Scatter, plot, line plot, Box plot	1
3	Chapter 1:Data Preprocessing	Data Pre-Processing: • Filling missing values(binning) • min_max & z score normalization, • linear regression, feature selection	1
4	Assessment 1	Assessment on Data description and Data Preprocessing	1
5	Course Project/WiDSDatathon Review – 01	Demonstration and presentation of course project	1
6	Chapter 3: Supervised Learning: Regression	 Demonstration and Practice ofbuilding Regression models Model's evaluation using metrics 	1
7	Chapter 4: Supervised Learning: Classification Watch: Home Assignment https://youtu.be/J2iqDVpbpeo	Demonstration and Practice on Classification modelsModel's evaluation using metrics	1
8	Course Project /WiDSDatathon Review – 02	Demonstration and presentation of course project	1
9	Assessment 2	Assessment on Classification/Regression	1
10	Chapter 4: Clustering	Practice on Clustering Algorithms (K means, DBSCAN)	1
11	Assessment 3	Assessment on Clustering	1
12	Course Project /WiDSDatathon Review – 03	Demonstration of complete working project	1
13	Review of portfolio/term paper		1
14	Submission of portfolio and term pa	aper	1

BACK

Program: Bachelor of Engineering		Semester - IV
Course Title: Object Oriented Programming Lab		Course Code: 24ECAP206
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42hrs	Exam Duration: 3hrs

Experiments	Lab assignments/experiment	No. of
Number		Slots
1	Demonstration: Introduction to Eclipse/Any other tool IDE (Integrated Development Environment), java programming basics.	5
2	Exercise: Classes and objects, Inheritance, Polymorphism, Exceptions Handling and Collection framework/lambda expressions	4
3	Structured Enquiry: Classes and objects, Inheritance, Polymorphism, Exceptions Handling, Lambda expressions	2
4	Open Ended: Data types, Classes and Objects, Inheritance polymorphism, Exception Handling. Design patterns	3

Text Book:

1. Herbert JAVA The Complete Reference, Herbert Schildt, 10th Ed, 2017, McGraw-Hill.

Reference Books:

- 1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media.
- 2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

	Assessment	Weightage in Marks
Internal Semester	Exercises	40
Assessment (80%)	Structured Enquiry	20
	Open Ended Experiment	20
End Semester Assessment (20%)	Structured Enquiry	20
	Total	100

BACK

Progra	Program: Bachelor of Engineering Semester - IV			
Course	Course Title: Problem Solving and Analysis (AUDIT) Course Code: 24EHS		A202	
L-T-P:	0-0-0	Credits: 0	Contact Hrs: 1hr/wee	ek
ISA M	arks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ing Hrs: 16	Tutorial/Practical:	Exam Duration: NA	
		Unit –I		
	Analytical Thinking: An	nalysis of Problems, Puzzles	for practice, Human	
1	Relations, Direction Tes	sts; Looking for Patterns: No	umber and Alphabet	4 hrs
_	Series, Coding Decoding; Diagrammatic Solving: Sets and Venn diagram-		4 1113	
	based puzzles; Visual Reasoning, Clocks and Calendars			
2	Mathematical Thinking: Number System, Factors and Multiples, Using		4 hrs	
	Simple Equations for Problem Solving, Ratio, Proportion, and Variation		71113	
3	Verbal Ability: Problem Solving using Analogies, Sentence Completion		4 hrs	
	Discussions & Debates: Team efforts in Problem Solving; A Zero Group			
	Discussion, Mock Group Discussions, and Feedback; Discussion v/s			
4	Debate; Starting a Group Discussion: Recruitment and other Corporate		4 hrs	
	Scenarios; Evaluation Parameters in a Recruitment Group Discussion,			
	Types of Initiators: Verb	al and Thought, Conclusion	of a Discussion	

Text Books: NA

Reference Books:

- 1. R. S. Aggarwal, "A Modern Approach to Verbal and Non Verbal Reasoning", Sultan Chand and Sons, New Delhi, 2018
- 2. R. S. Aggarwal, "Quantitative Aptitude", Sultan Chand and Sons, New Delhi, 2018
- 3. Chopra, "Verbal and Non Verbal Reasoning", MacMillan India
- 4. M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018
- 5. Diana Booher Communicate With Confidence, Mc Graw Hill Publishers
- 6. Norman Lewis Word Power Made Easy, Goyal Publishers
- 7. Cambridge Advanced Learner's Dictionary, Cambridge University Press.
- 8. Kaplan's GRE guide

BACK

Semester - V

Semester - V

Prog	ram: Bachelor of Engir	neering	Semester - V	
Cour	Course Title: Software Engineering Course Code: 22ECAC		301	
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/we	ek
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40	Tutorial/Practical:	Exam Duration: 3hrs	
		Unit - I		
1	Software engineering	ng process: Professional so ethics, Case studies, Softwa ess activities and Coping with	re processes: Software	05 hrs
2		elopment: Agile methods, ne programming, Agile projec	_	05 hrs
3	Requirement Engineering: Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirements elicitation and analysis; Requirements validation; Requirements management, Source Control Management, Collaboration tools.			06 hrs
Unit - II				
4	System Modeling: Context models, Interaction Models, Structural models, Behavioral models. Design Tools.		05 hrs	
5	Architectural Design: Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.		05 hrs	
6	Software Testing: Development Testing, Test Driven Development, Release Testing, User Testing and Testing Tools.		06 hrs	
	Unit - III			
7	Introduction to DevOps: DevOps Principles, Benefits of working in a DevOps environment, Lifecycle, stages, Delivery pipeline, Technical challenges and DevOps Tools			04 hrs
8	continuous integra	on and continuous delivery tion, Jenkins architecture master-slave architecture, Je	e, Jenkins security	04 hrs

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
ISA1	40	20
ISA2	40	20
Activity	10	10
	Total	50

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Theory	100	50
	Total	50

BACK

Course Title: Computer Networks	Prog	ram: Bachelor of Engine	ering	Semester - V			
ISA Marks: 50 Teaching Hrs: 45 Tutorial/Practical: — Exam Duration: 3 hrs Unit —I Introduction and Application layer: Introduction to Internet; The Network Edge and Core; Delay, Loss, and Throughput in Packet-Switched Networks; Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet — SMTP, POP, and IMAP; The Internet's Directory Service — DNS; Dynamically configuring a host — DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit —II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing: BGP. Broadcast and Multicast Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit —II Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	Cour	rse Title: Computer Netw	vorks	Course Code: 24ECAC302			
Teaching Hrs: 45 Tutorial/Practical: Exam Duration: 3 hrs Unit -I Introduction and Application layer: Introduction to Internet; The Network Edge and Core; Delay, Loss, and Throughput in Packet-Switched Networks; Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet - SMTP, POP, and IMAP; The Internet's Directory Service - DNS; Dynamically configuring a host - DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit -II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit -II Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3hrs/week					
Unit –I Introduction and Application layer: Introduction to Internet; The Network Edge and Core; Delay, Loss, and Throughput in Packet-Switched Networks; Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet – SMTP, POP, and IMAP; The Internet's Directory Service – DNS; Dynamically configuring a host – DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANS), Multiprotocol Label Switching	ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100			
Introduction and Application layer: Introduction to Internet; The Network Edge and Core; Delay, Loss, and Throughput in Packet-Switched Networks; Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet — SMTP, POP, and IMAP; The Internet's Directory Service — DNS; Dynamically configuring a host — DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit—II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet; ntra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and—Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit—III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANS), Multiprotocol Label Switching	Teac	hing Hrs: 45	Tutorial/Practical:	ectical: Exam Duration: 3 hrs			
Edge and Core; Delay, Loss, and Throughput in Packet-Switched Networks; Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet – SMTP, POP, and IMAP; The Internet's Directory Service – DNS; Dynamically configuring a host – DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching			Unit –I				
Protocol Layer and Service Models: OSI and TCP/IP; Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet – SMTP, POP, and IMAP; The Internet's Directory Service – DNS; Dynamically configuring a host – DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet; intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Introduction and Appli	ication layer: Introduction	on to Internet; The Network			
Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet — SMTP, POP, and IMAP; The Internet's Directory Service — DNS; Dynamically configuring a host — DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit —II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet; Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit —III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Edge and Core; Delay,	Loss, and Throughput in	Packet-Switched Networks;			
Principles of Network Applications; The Web and HTTP; Electronic Mail in the Internet – SMTP, POP, and IMAP; The Internet's Directory Service – DNS; Dynamically configuring a host – DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	1	Protocol Layer and Serv	ice Models: OSI and TCP/	'IP;	0 Hrs		
Dynamically configuring a host – DHCP; Peer-to-peer applications Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	_	Principles of Network A	pplications; The Web and	d HTTP; Electronic Mail in the	3 1113		
Transport-Layer Services: Introduction and Transport Layer Services; Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit -II		Internet – SMTP, POP,	and IMAP; The Interne	t's Directory Service – DNS;			
Multiplexing and Demultiplexing; Connectionless Transport: UDP; Pipelined protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit -II		Dynamically configuring a host – DHCP; Peer-to-peer applications					
protocols, stop and wait, go-back-N and selective repeat protocols; Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Transport-Layer Servi	ces: Introduction and	Transport Layer Services;			
Connection-Oriented Transport: TCP; Principles of Congestion Control; TCP Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Multiplexing and Demu	ıltiplexing; Connectionles	ss Transport: UDP; Pipelined			
Congestion Control. Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	2	· ·	. •		9 Hrs		
Unit –II Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching			ransport: TCP; Principles	of Congestion Control; TCP			
Network Layer: Data plane: Introduction to Data and Control Plane of Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Congestion Control.					
Network Layer; Virtual Circuit and Datagram Networks; The Internet Protocol: Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching							
Datagram format, Fragmentation, IPv4 addressing, NAT, ICMP, and IPv6. Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		<u>-</u>	•				
Network Layer: Control plane The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit -III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		, ,					
The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching				ng, NAT, ICMP, and IPv6.			
Algorithm, Hierarchical Routing, Routing in the Internet, intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	3	<u>-</u>	•	· · · · /D\/\ D	12 Hrs		
the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP. Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching 4 hrs		, ,		, , <u>-</u>			
Broadcast and Multicast Routing, Broadcast Routing Algorithms. Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching				_			
Data Link Layer: Introduction to the Link Layer, Error-Detection and - Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		·	<u> </u>				
Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC) binary and polynomial, Hamming Code Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching							
The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching Unit –III Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. 4 hrs 4 hrs	4	_		•	7 hrs		
Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	_	•	•		7 1113		
Data Link Layer: Channel access protocols: Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		neddinadiley effect (effe	· · · ·	, riaiming code			
Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching 4 hrs							
Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching 4 hrs		•	•	•			
The Link-Layer Protocol for Cable Internet Access. Switched Local Area Networks: Link-Layer Addressing and ARP, Ethernet 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching	5		•		4 hrs		
6 802.3, Token ring 802.5, FDDI and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		The Link-Layer Proto	col for Cable Internet Acc	cess.			
Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		Switched Local Area	Networks: Link-Layer A	ddressing and ARP, Ethernet			
Virtual Local Area Networks (VLANs), Multiprotocol Label Switching		802.3, Token ring 80	02.5, FDDI and LAN star	ndards, Link-Layer Switches,	A 1.		
(MPLS)	6	Virtual Local Area	Networks (VLANs), Mu	Itiprotocol Label Switching	4 nrs		
		(MPLS)					

Text Books

1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.

Reference Books:

- 1. Behrouz A. Forouzan, "Data Communications and Networking with TCPIP Protocol Suite", 6thEdition, McGraw Hill, 2021
- 2. Larry Peterson, Bruce Davie "Computer networks: a systems approach", 6th Edition, 2021.

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
ISA1 (Theory)	40	20
ISA2	40	20
Activity	10	10
	Total	50

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Theory	100	50
	Total	50

BACK

Program: Bachelor of Engine	ering	Semester - V		
Course Title: Machine Learni	urse Title: Machine Learning Course Code: 22ECAC303			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 30	Tutorial/Practical:	Exam Duration: 3 hrs		
	Unit –I			
Introduction to mach	nine learning: Introduc	tion to Machine Learning,		
Applications of Machin	ne Learning, Types of M	achine Learning: Supervised,	8hrs	
Unsupervised and Reii observations.	nforcement learning, Da	taset formats, Features and	Oilis	
Supervised Learning:	Linear Regression,	Logistic Regression: Linear		
Regression: Single and	Multiple variables, Sum o	of squares error function, The		
2 Gradient descent algorit	thm, Application, Logistic	Regression, The cost function,	8 hrs	
Classification using log	istic regression, one-vsa	all classification using logistic		
regression, Regularizati	on.			
	Unit –II			
Supervised Learning: N	Supervised Learning: Neural Network: Introduction to perceptron learning,			
Model representation,	Gradient checking, Back	propagation algorithm, Multi-	8 hrs	
class classification, a	nd Application- classify	ring digits. Support vector	05	
machines.				
	-	ction and Learning Theory:		
· ·	, ,	The dimensionality reduction,		
· •	•	andomized PCA, Kernel PCA ,	8 hrs	
, ,		variance tradeoff, Union and		
Chernoff Hoeffding bou	Chernoff Hoeffding bounds VC dimension.			
Unit –III				
5 I	_	ng: Introduction, Applications,	4 hrs	
and Model of the enviro	•			
		ions Evaluating actions: The		
	olem, Policy gradients, M	larkov decision processes, Q-	4 hrs	
learning				
Text Books (List of books as r				

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.

References

- 1. Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelian Gerona, Publisher: O'Reilly Media, July 2016.
- 2. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty..

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
ISA1 (Theory)	40	20
ISA2	40	20
Activity	10	10
	Total	50

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Theory	100	50
	Total	50

BACK

Program: Bachelor of Engineering		Semester - V		
Cours	ourse Title: Internet of Things Course Code: 24ECAC		08	
L-T-P	: 2-0-1	Credits: 3	Contact Hrs: 4hrs/week	
ISA N	A Marks: 67 ESA Marks: 33 Total Marks: 100			
Teaching Hrs: 30 Tutorial/Practical: Exam Duration: 2 hrs				
		Unit –I	-	
	Introduction			08 hrs
	IoT overview, characteristics, protocols, functional blocks, communication			
1	models, APIs, levels; e	nabling technologies: sens	ors, Zigbee, Bluetooth, Z-	
	Wave, IEEE protocols,	LPWAN, 5G networks, IoT	ecosystem.	
	Network protocols			04 hrs
	Routing Protocol for L	ow-Power and Lossy Netw	orks (RPL), cognitive RPL	
2	(CORPL), Channel-Awa	are Routing Protocol (CAR	P), Low power Wireless	
	Personal Area Networl	ks (LoWPAN), IPV6, 6LoWP	AN, Route-Over & Mesh-	
	Under techniques.			
	Application and Security protocols			03 hrs
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks,			
3	Secure MQTT, Advance	ed Message Queuing Proto	col (AMQP), Constrained	
	Application Protocol (CoAP), OPC UA, 6LoWPA	N), Routing Protocol for	
Low-Power and Lossy Networks (RPL), TLS/DTLS.				
		Unit –II		
	Design Methodology a	and IoT Platforms		05 hrs
	IoT system design, me	thodology, and case studie	s; device building blocks;	
4	platforms and opera	iting systems; communic	ating with Wi-Fi, BLE,	
	LoRAWAN, 5G; intel	ligent IoT with on-devic	ce AI deployment and	
	inference.			
	Edge Computing for I	oT: Introduction, Architect	tures, Technologies, and	04 hrs
5	Applications in IoT, Edg	ge Hardware and Software,	Mobile Edge Computing.	
	Edge Intelligence, Edge cloud and networking.			
	IoT prototyping			06 hrs
		xample applications: Ca		
6	·	ies, Environment, Energy, A		
		a analytics and security, Inc	dustrial IoT (IIoT), Role of	
	AI/ML in IoT (AIoT).			

Text Books:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.
- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014
- 3. Drew Van Duren, Brian Russell "Practical Internet of Things Security" Second Edition, Packt Publishing November 2018.

References

- 1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.
- 2. Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", Wiley 2009.

Lab Plan

Ехр	Brief description about the experiment	Number
No.		of slots
1	Study the fundamental of IoT software's and components. Familiarization with Arduino/Raspberry Pi and perform necessary software	1
2	Exercise on basic electronics and motor control fundamentals such as 1) LED Blink Application, Relay Using Bulb 2) 12V DC Motor Using L298 Motor Driver 3) Servo Motor	1
3	Exercise on usage of different types of sensors (IR Sensor, Passive Infrared Sensor (PIR Sensor), Ultrasonic Sensor, DHT 11 (Temperature and Humidity Sensor), Pulse Rate Sensor, Soil moisture sensor)	1
4	Connecting wireless communication module (e.g., Wi-Fi, Bluetooth)	1
5	Assessment -1 Utilizing a range of sensors in conjunction with a microcontroller such as Arduino or Raspberry Pi, develop a compact IoT application designed to gather data from these sensors and wirelessly transmit it utilizing a low-power communication protocol.	1
6	Review – 1 Problem Identification Software and Hardware components Schematic diagram	1
7	Establishing MQTT Communication in IoT / Implementing AMQP Messaging in IoT / Application Protocol (CoAP) /Web Socket Building MQTT Dashboard, Publish and Subscribe using MQTT, AMQP	1

	Review – 2			
	Methodology			
8	Block diagram	2		
	 Mobile app to remote control the things / database storage 			
	and analysis.			
9	Integrating Artificial Intelligence (AI) and Machine Learning (ML)	2		
	techniques with Internet of Things (IoT) systems			
	Review – 3			
10	Final demonstration and report submission	3		
	 Integrating AI/ML technique with IoT application 			

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Program: Bachelor of Engineering			Semester - V	
Course Title: Machine Learning Lab Course Code: 22ECA			2ECAP303	
L-T-P:0-0-1.5		Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80)	ESA Marks: 20	Total Marks: 100	
Teaching Hrs	:	Tutorial/Practical: 45hrs	Exam Duration: 3hrs	
Experiment Brief description about the experiment		riment	Number	

Teaching Hrs:		Tutorial/Practical: 45hrs	Exam Duration:	3hrs
Experiment	Brief	description about the experi	ment	Number
No.				of slots
1.	Introduction to TensorFlow		1	
	Sample programs with TensorFlow			
2.	Linear Regression 2		2	
	Nonlinear Regression			
	Logistic Regression			
	Activation Functi	ons		
3.	Training a multi-l	ayer perceptron using API's		1
4.	Training a neural	network – construction, exec	cution and use of	1
	neural network.			
5.	Training Neural N	letworks - a sequence classifi	er and to predict	1
	time series.			
6.	Classification of Human Facial Expressions using Neural 1		1	
	Networks	letworks		
7.	Principal Component Analysis on			
	simple matrix		1	
	on iris dataset			
8.	Course Project: Students in a group of four shall implement		4	
	machine learning	g solution to a real-world pr	oblem using ML	
	frameworks in any of the areas listed below:			
	Natural Language Processing			
	Deep Reinforcement Learning			
	Image processing			
	Audio processing			
	Pattern recognition			
	Data visualization and analysis			
9.	Course Project Review		2	

Reference Books:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Hands-On Machine Learning with Scikit-Learn and Tensor Flow, Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelian Gerona, Publisher: O'Reilly Media, July 2016.
- 4. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In S	emester	Assessment	Weightage in Marks
Assessment (80%)		Exercise (Problem execution, Viva, Observation Book, etc.)	15+15+10 = 40
		Structured Enquiry	20
		Course Project	20
		Total (ISA)	80
End Semester Assessment (20%)		Exercise	20
		Total	100

BACK

Program: Bachelor of Engineering		Semester - V		
Cou	urse Title: Web Technologies Lab Course Code: 24EC		Course Code: 24ECAP304	
L-T-F	P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA I	Marks: 80	ESA Marks: 20	Total Marks: 100	
Teac	ching Hrs: -	Tutorial/Practical: 60hrs	Exam Duration: 3 hrs	
			,	
	Introduction to HTMI	basics, JavaScript: Introduct	ion to World Wide Web, Web	
1	Application Architectu	ire, HTML Basics, Cascading S	tyle Sheets, JavaScript Basics,	
	Bootstrap			
	RESTful API using NodeJS and Express: Introduction to Node.js .Building server			
2	using the http and net modules, Node modules and events, Express, REST API clien		vents, Express, REST API client,	
	Postman, Accessing Da	ata, Data Security using Bcrypt.	API security using JWT tokens.	
	React: Introduction to ReactJS, Setting up the development environment, ReactJS			
	Ecosystem, Fundamental Concepts: JSX, Components, State and Lifecycle Handling			
3	events, Conditional Rendering.			
	Advanced ReactJS Concepts: Hooks, Context API, Routing, Error Boundaries, Form			
	handling, State Management Libraries, Fetching data from API's.			

Reference Books:

- 1. Robert W. Sebesta." Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 2. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 3. Robin Wieruch ,The Road to React: Your journey to master plain yet pragmatic React.js, 2024.

Lab Plan

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1	Demonstration on HTML, JavaScript, CSS	03
2	Exercise on HTML, JavaScript, CSS JavaScript	01
3	Demonstration on type script	01
4	Demonstration on Node	02
5	Exercise on Node JS with type script	01
6	Structured enquiry on Node JS	01
7	Demonstration on React	03
8	Exercise on React	01
9	Open ended Experiment	02

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In Semester	Assessment	Weightage in Marks
Assessment (80%)	Exercise (Problem execution, Viva, Observation Book, etc.)	15+15+10 = 40
	Structured Enquiry	20
	Course Project	20
	Total (ISA)	80
End Semester	Exercise	20
Assessment (20%)	Total	100

BACK

Program: Bachelor of Engineering		Semester - V
Course Title: Computer Networks Lab		Course Code: 22ECAP302
L-T-P: 0-0-1.5 Credits: 1.5		Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 45hrs	Exam Duration: 3hrs

Tentative plan of lab Implementation

Week No	Lab Assignments
1	Demonstration of n/w commands and tools in command prompt.
2	Demonstration of Cisco Packet Tracer network tool: usage of hub, switch,
	and a router using a simple topology
3	Application layer protocol implementation – Manual configuration and
	DHCP
4, 5	Application layer protocol implementation - DNS and HTTP
6	Demonstration of socket programming using a simple message board
	application - Connection oriented and connectionless.
7, 8	Develop a quiz application using UDP sockets
9	Implementation of HTTP server using TCP sockets.
10	Performance Analysis of TCP vs UDP
11,12,13,	Design and analyze networks using simulation tools and operating
14,15	systems with Al-driven optimization

Text Books

1. J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition, Pearson Education, 2021.

Reference Books:

- 1. Behrouz A. Forouzan, "Data Communications and Networking with TCPIP Protocol Suite", 6th Edition, McGraw Hill, 2021
- 2. Larry Peterson, Bruce Davie "Computer networks: a systems approach", 6th Edition, 2021.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In Semester	Assessment	Weightage in Marks	
Assessment (80%)	Exercise (Problem execution, Viva, Observation Book, etc.)	15+15+10 = 40	
	Structured Enquiry	20	
	Open ended	20	
	Total (ISA)	80	
End Semester	Exercise	20	
Assessment (20%)	Total	100	

BACK

Program: Bachelor of Engineering		Semester - V
Course Title: Mini Project		Course Code: 22ECAW301
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 45hrs	Exam Duration: 3 Hrs

Student Evaluation Matrix

SI. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem	15
		statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 &	Final Demo & exhibition	
	peer review:	Peer review will be done after review 1 &	10
		review 4)	
		Total	50

Scheme for End Semester Assessment (ESA) ESA Evaluation (50 Marks)

SI No	Description	Marks	
1	Write up – Learning from Project, Personal Contribution to	OE.	
1	project	05	
•	Final demo & Presentation(Solution approach to the identified	25	
2	problem, testing and results)	35	
4	Individual Contribution to the team	10	
	Total	50	

BACK

Program: Bachelor of Engineering		Semester - V		
Course Title: Arithmetical Thinking and Analytical Reasoning		Course Code: 23EHSA303		
(AUDIT)				
L-T-P: 0-0-0 Credits: 0		Contact Hrs: 1 hr/week		
ISA Marks: 100 ESA Marks: 00		Total Marks: 100		
Teaching Hrs: 16 hrs		Exam Duration: NA		
Unit – I				

1	Analytical Thinking: Importance of Sense of Analysis for Engineers, Corporate Methodology of Testing Sense of Analysis, Puzzles for practice: Analytical, Mathematical, Classification Puzzles, Teamwork in Problem Solving	4 hrs
2	Mathematical Thinking I: Problems on Finance: Percentages, Gain and Loss, Interest; Distribution and Efficiency Problems: Averages, Time Work, Permutations Combinations	4 hrs
3	Mathematical Thinking II: Distribution Problems: Permutations Combinations	2 hrs
4	Verbal Ability: Comprehension of Passages, Error Detection and Correction Exercises, Common Verbal Ability questions from Corporate Recruitment Tests	6 hrs

Text Book: NA

References:

- 1. George J Summers, "The Great Book of Puzzles & Teasers", Jaico Publishing House,1989
- 2. Shakuntala Devi, "Puzzles to Puzzle You", Orient Paper Backs, New Delhi, 1976
- 3. R. S. Aggarwal, "A Modern Approach to Logical Reasoning", Sultan Chand and Sons, New Delhi, 2018
- 4. M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018
- 5. Cambridge Advanced Learner's Dictionary, Cambridge University Press.
- 6. Kaplan's GRE guide

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
Minor Exam 1	50
Minor Exam 2	50
Total	100

Course Unitization for Minor Exams and End Semester Assessment

SI No	Chapter	Teaching Hours	No. of Questions in ESA
1	Analytical Thinking	4	N.A.
2	Mathematical Thinking I	4	N.A.
3	Mathematical Thinking II	4	N.A.
4	Verbal Ability	4	N.A.

Note* All questions are compulsory.

BACK

Semester - VI

Program: Bachelo	or of Engineering			Semester - VI	
Course Title: Deep	ourse Title: Deep Learning Course Code: 24ECAC30		05		
L-T-P: 3-0-1	-P: 3-0-1 Credits: 4			Contact Hrs: 5hrs/week	
CIA Marks: 63	ESA Ma	rks: 37		Total Marks: 100	
Teaching Hrs: 40	Tutorial	/Practical: 28h	irs	Exam Duration: 3 hrs	
		Unit-I			
1 networks,	Convolution ne neural network	ng: Shallow ne	(CNN),	works and deep neural Types of layers in ation functions, Pooling	8 hrs
Classic Network AlexNet, VG Depthwise	Classic Networks & Optimization Algorithms: Classic Network: Lenet-5,			8 hrs	
		Unit-II			
learning on detection, co	Deep Learning for Computer Vision: Computer vision problems, Deep learning on large Images, Edge detection, vertical and horizontal edge detection, convolution over volumes, object detection and localization, YOLO algorithm, RCNN, CNN for semantic segmentation, UNet.		8 hrs		
Recurrent N Backpropaga Recurrent U	Recurrent Neural Networks: Examples of sequence data, Basics of RNN, Backpropagation through time, Vanishing gradient with RNN, Gated Recurrent Unit (GRU), Long Short-Term Memory Unit (LSTM), Bidirectional RNN and LSTM.		8 hrs		
		Unit-III			I
Improving	Improving Deep Neural Networks: Hyper parameter tuning,				
Dropout	Regularization and Normalization: Data preprocessing, Augmentation,			8 hrs	
Text book:	on, Batch Norma	lization and Pro	ogramm	ing Frameworks	

Text book:

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, edition 3
- 2. Deep Learning with Python, Second Edition,
- 3. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka, Vahid Mirjalili.

Reference book:

- 1. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006
- 2. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems ,By AurélienGéron , Publisher: O'Reilly Media, July 2016
- 3. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

Ехр	Brief description about the	Number	Marks	BL	PI Code
No.	experiment	of slots			
1.	Introduction to Neural networks training	02	(Demo)	L3	2.3.1
	techniques.		NIL		
2.	Design the DNN model using	02	10	L4	2.3.1
	transfer learning technique.				
3.	Implementation of Optimization algorithms:	02	(Demo)	L4	2.3.1
	Gradient descent with momentum, RMSprop,		NIL		
	ADAM				
4.	Implementation of Object detection and	02	10	L4	2.3.1
	Localization: YOLO				
5.	Implementation of Semantic Segmentation: UNet	02	10	L4	2.3.1
	Architecture				
6.	Implementation of Recurrent Neural Networks:	02	10	L4	2.3.1
	RNN & LSTM				
7.	Experiments on Hyper parameter tuning:	02		L4	2.4.2
	Data Preprocessing, Augmentation				
8.	More Experiments on Hyper parameter	02	(Demo)	L4	2.4.2
	tuning: Batch Normalization, Dropout		NIL		
	Regularization				

Evaluation Scheme ISA

Assessment	Conducted for Marks	ISA Weightage
ISA1	30	38
ISA2	30	
Lab	40	25
Total	100	63

Evaluation Scheme ESA

Assessment	Conducted for Marks	ISA Weightage
ESA Theory Exam	100	37

BACK

Prog	Program: Bachelor of Engineering Semester - VI			
Cour	Course Title: Embedded Intelligent Systems Course code: 24ECAC		306	
L-T-P: 1-0-2 Credits: 3		Credits: 3	Contact Hrs: 5hrs/week	
ISA N	SA Marks: 67 ESA Marks: 33		Total Marks: 100	
Teac	hing Hrs: 14	Tutorial/Practical: 56hrs	Exam Duration: 2 hrs	
	Basics of embedded	systems: Linux Application Pro	ogramming, System V	
1	IPC, Linux Kernel Int	ernals and Architecture, Kern	el Core, Linux Device	3 hrs
_	Driver Programming,	, Interrupts & Timers, Sample sl	nell script, application	31113
	program, driver sour	ce build and execute.		
	Heterogeneous com	nputing: Basics of heterogene	eous computing with	
	various hardware a	rchitectures designed for sp	ecific type of tasks,	
2	Advanced heteroge	neous computing with a. Int	roduction to Parallel	
_	programming b. GP	U programming (OpenCL) c.	Open standards for	3 hrs
	heterogeneous computing (Openvx), Basic OpenCL examples - Coding,			
	compilation and exe	cution		
	ML Frameworks la	b with the target device: (Caffe, TensorFlow, TF	
		g frameworks & architecture, N		
3		ty, supported layers, advantag		3 hrs
	with each of these f	rameworks, Android NN archit	tecture overview, Full	
	stack compilation and execution on embedded device			
	<u>-</u>	t and Optimization: Significa		
4		ng, weight sharing, Distillation	•	3 hrs
-	networks and design	n considerations to choose a p	particular pre-trained	0
		arning, Flexible Inferencing		
	_	Android Architecture, Linux		
5	-	ndroid Runtime, Dalvik App	olication framework,	2 hrs
	Applications, IPC			
Text	Text Books			

- 1. Linux System Programming, by Robert Love, Copyright © 2007 O'Reilly Media
- 2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann

Reference Books:

- 1. Deep Learning, MIT Press book ,Goodfellow, Bengio, and Courville's
- 2. Beginning Android , by Wei-Meng Lee , Publisher: Wrox , O'Reilly Media

SI.	Experiments	Number
No.		of slots
1.	Linux Application Programming.	2
2.	Basic OpenCL examples, High level language to assembly	2
۷.	language translation, optimization and power management.	2
3.	Deep Learning Frameworks and optimization techniques.	2
	Implementation of basic and DNN architecture for Android	
4.	framework, Push ML/DL model on Android device and run	3
	application.	
5.	Course project	5

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	il	67

End-Semester Assessment Scheme

Assessment	Conducted for	Weightage in			
	marks	Marks			
Theory	60	33			
Total		33			

BACK

Program: Bachelor of Engineering		Semester - VI		
Course Title: Natural language processing and Gen AI		Course Code: 24ECAC	307	
L-T-P	L-T-P: 2-0-2 Credits: 4 Contact Hrs: 06 hrs/we		eek	
ISA I	Marks: 50	50 ESA Marks: 50 Total Marks: 100		
Teac	hing Hrs: 30 hrs	Tutorial/Practical: 56hrs	Exam Duration: 2 hrs	
		Unit –I		
	Introduction to NLP:	Introduction to Natural	Language Processing,	_
1	Applications of Natural	Language Processing, Word	d embeddings. Parsing	04 hrs
	techniques - Dependency Grammar, Neural dependency parsing.			
2	Machine Translation, Auto encoders and decoders: Machine Translation,		06 hrs	
	Seq2Seq and Attention, Autoencoder and decoders.			
3	Generative Adversarial Networks: Generative vs. Discriminative models,		05 hrs	
	Generative Adversarial I	Networks and Language Mo	dels, types of GANs.	
Unit –II				
	Transformer Networks & Diffusion models: Transformer Networks,			07 hrs
4	transformers for text generation, Diffusion models – continuous vs			
	discrete, deterministic vs stochastic models.			
5	Large Language Model	s: Introductions to LLM's,	LLM - BERT and GPT	08 hrs
,	models, prompting tech	niques, Adapters and low ra	ank adoption (LoRA).	

Text Book

- 1. Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing, 2022.
- 2. "Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster.
- 3. "Hands-On Generative Adversarial Networks with Keras: Create Beguiling Image Generation Projects to Extend Your Generative AI Skills" by Rafael Valle.

References:

- 1. Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft).
- 2. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press.

Natural Language Processing and GenAl Lab Plan: List of Experiments:

Experiment No.	Brief description about the experiment	Number of slots
10.	Experiments on Text Classification- word2vec, Language Modeling, Machine Translation, Text Summarization	2
11.	Experiments on Machine Translation - seq2seq model, Text Summarization	2
12.	Experiments on Part-of-Speech (POS) Tagging, Question Answering Systems, Topic Modeling	2
13.	 Implementing a Basic Diffusion Model Training a Diffusion Model Image Denoising Using Diffusion Models 	2
14.	Data pre-processing and Tokenization, Building a Simple Language Model	1
15.	Implementing Attention Mechanisms, Exploring Transformer Architectures	1
16.	 Fine-Tuning for Specific Tasks Ethical Considerations and Bias Detection Real-World Application Development Performance Optimization and Scaling 	4

Evaluation Scheme (ISA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	ISA -I	30	25
2.	ISA – II	30	23
3.	Lab Evaluation	20	10
4.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	Theory Exam (ESA)	60	25
		20	
2.	Lab Exam (ESA)	20	25
		10	

BACK

Program: Bachelor of Engineering		Semester - VI
Course Title: Minor Project		Course Code: 24ECAW304
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 90hrs	Exam Duration: 3 hrs

The objective of the minor project is to develop deeper understanding of the chosen area of technology vertical and develop applications with a comprehensive and systematic approach.

Project Domains:

Networking	Data	System	AI & ML	Industry/Domain	
	Engineering	Engineering			
Internet of	Data Analytics	Parallel	Supervised	As per industry	
Things		Computing	Learning	requirements	
Software	Data Processing	High	Unsupervised	-	
Defined	(Image/Video/A	Performance	Learning		
Network	udio/Text)	Computing			
Cloud	Natural	Quantum	Deep Learning	-	
Computing	language	Computing			
	processing				
Block	Computer	-	Generative	-	
Chains	Vision		Models		
Wireless	-	-	-	-	
Ad-hoc &					
Sensor					
Networks					
	Any other related themes				

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Assessment Weightage in		Assessment Weightage in
Marks		Marks
	Review-1	10
ISA	Review-2	20
	Review-3	20
ESA		50
	Total	100

Scheme for In-Semester Assessment (ISA)

ISA (periodic reviews)	Review Expectation	Guide Marks	Reviewer Marks	Total Marks
Review-1	Identification of problem, objectives, requirement analysis and report.	5	5	10
Review-2	Design and Implementation: coding as per standards, module testing.	10	10	20
Review-3	Review-3 System testing and demo of the final project, quality of code, result analysis and project report.		10	20
	Total	25	25	50

Scheme for End Semester Assessment (ESA)

Parameters	Pl's	Max Marks	со	BL
Demo with solution approach	14.3.1	30	1	4
to the identified problem				
Testing & Results	3.4.2	05	2	4
Presentation	9.3.1	05	3	3
Individual Contribution	14.3.1	05	3	3
Report	10.1.2	05	3	3
	То	tal = 50		

BACK

Program: Bachelor of Engineering		Semester - VI		
Course Title: Professional Aptitude and Logical Reasoning		Course Code: 16EHSC301		
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/we	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100)
Teaching Hrs: 40		Tutorial/Practical:	Exam Duration:	3 hrs
	Unit –l- Aı	rithmetical Reasoning and Analyti	cal Thinking	
1 Arithmetical Reasoning			10hrs	
2 Analytical Thinking				4 hrs
3 Syllogistic Logic				3hrs
		Unit –II		
4 Verbal Logic				4 hrs
5 Non-Verbal Logic				4 hrs
	•	Unit –III- Lateral Thinking		•
6 Lateral Thinking			4 hrs	

- 1. A Modern Approach to Verbal and Non Verbal Reasoning R. S. Aggarwal, Sultan Chand and Sons, New Delhi
- 2. Quantitative Aptitude R. S. Aggarwal, Sultan Chand and Sons, New Delhi

Reference Books:

- 1.Verbal and Non Verbal Reasoning Dr. Ravi Chopra, MacMillan India
- 2. Lateral Thinking Dr. Edward De Bono, Penguin Books, New Delhi

Evaluation Scheme (ISA)

Assessment	Conducted for Marks	Weightage in Marks
ISA1 (Theory)	40	20
ISA2	40	20
Activity	10	10
	Total	50

Evaluation Scheme (ESA)

Assessment	Conducted for Marks	Weightage in Marks
Theory	100	50
	Total	50

^{**}The indicated method may be adopted for CIE after due approval from DUGC of Department of Humanities.

BACK

Progra	Program: Bachelor of Engineering		Semester - VI	
Course Title: Industry Readiness & Leadership Skills (AUDIT)		Course Code: 23EHSA	\304	
L-T-P:	0-0-0	Credits: 0	Contact Hrs: 1hr/wee	ek
ISA M	arks: 100	ESA Marks: NA	Total Marks: 100	
Teach	ing Hrs: 16	Tutorial/Practical:	Exam Duration: NA	
		Unit –I		
	Written Communication: Successful Job Applications, Résumé Writing,			
1	Emails, Letters, Busine	ss Communication, Essay, ar	nd Paragraph Writing	6 hrs
for Recruitment Tests				
2	Interview Handling Skills: Understanding Interviewer Psychology,		rviewer Psychology,	4 hrs
	Common Questions in	HR Interviews, Grooming, In	nterview Etiquette	4 1113
	Lateral & Creative Thinking: Lateral Thinking by Edward de Bono,			
3	3 Fractionation and Brain Storming, Mind Maps, Creativity Enhancement			4 hrs
	through Activities			
	Team Building & Leadership Skills: Communication in a Team,			
4	Leadership Styles, Playing a Team member, Belbin's team roles, Ethics,		2 hrs	
	Effective Leadership St	rategies		

Text Books:

NA

Reference Books:

- 1. Diana Booher E Writing, Laxmi Publications
- 2. Edward de Bono Lateral Thinking A Textbook of Creativity, Penguin UK
- 3. William Strunk, E B White The Elements of Style, Pearson
- 4. John Maxwell The 17 Essential Qualities of a Team Player, HarperCollins Leadership
- 5. Robin Ryan 60 Seconds and You're Hired! Penguin Books

Evaluation Scheme

ISA Scheme

Assessment	Weightage in Marks
Minor Exam 1	50
Minor Exam 2	50
Total	100

BACK

Professional Electives-1, 2 & 3 Data Intelligence

Program: Bachelor of Engineering				
Cou	rse Title: Digital Image and \	/ideo Processing	Course Code: 24E	CAE310
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 4hrs/week	
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2	hrs
		Unit –I		
1 (2D) and 3-dimensional (3D) signals, analog/digital dichotomy, electromagnetic spectrum, and applications.			3hrs	
Signals and Systems: Fundamentals of 2D signals and systems. Complex exponential signals, linear space-invariant systems, 2D convolution, and filtering in the spatial domain.			3hrs	
3	Fourier Transform and Sampling: 2D Fourier transform, sampling, discrete Fourier transform, and filtering in the frequency domain.			3hrs
4	 Motion Estimation: Applications of motion estimation, phase correlation, block matching, spatio-temporal gradient methods, and fundamentals of color image processing. 		3hrs	
Unit –II				
5	 Image Enhancement: Point-wise intensity transformation, histogram processing, linear and non-linear noise smoothing, sharpening, homomorphic filtering, pseudo-coloring, and video enhancement. 		3 hrs	
6	Lossless and Lossy Compression: Elements of information theory, Huffman coding, run-length coding and fax, arithmetic coding, dictionary techniques, and predictive coding. Scalar and vector quantization, differential pulse-code modulation, fractal image compression, transform coding, JPEG, and sub band image compression.			4 hrs
7	-	ion-compensated hybrid vid ds including H.261, H.263, H.2	-	3 hrs

Unit -III			
8	Image and Video Segmentation: Intensity discontinuity and intensity similarity, watersheds and K-means algorithms, and other advanced methods.	4 hrs	
9	Sparsity: Sparsity-promoting norms, matching pursuit algorithm, smooth reformulations, and an overview of the applications.	4 hrs	

Text Books:

- 1. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 4th edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2018.
- 2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

Reference Books:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009.

Laboratory Plan

Week No	Topics for discussion	Experiments for practical session
0	Overview of the Course, Registration for the MOOC course Fundamentals of Digital and Image Processing.	Guidelines for the lab sessions.
1	Introduction to course and applications of Image and Video processing	Introduction to lab session, Introduction to Python and OpenCV. Sample basic programs.
2	Introduction to 2D signals and systems, 2D Convolution and filtering in spatial domain.	filtering in spatial domain (Averaging filter and Median filter)
3	Fourier Transform and Sampling , DFT	Compute DFT of given function, filtering in the frequency domain (LPF,HPF)
4	Motion Estimation and color image processing.	Implement Block matching method and Differential method. Illustration and conversion of color models.
5	Image Enhancement	Intensity transformations, Histogram processing (Equalization and specification), smoothing and sharpening.
6	Image Recovery - image restoration	Spatial and frequency domain filters. Selection of course project topic.
7	Lossless Compression methods	Implementation of lossless image compression methods.

8	Lossy Compression methods	Implementation of lossy image
		compression methods.
9	Image segmentation	Edge detection and region based
		segmentation.
10	Video Commentation	Basic programs on video processing
	Video Segmentation	and Shot detection.
11	Review 1 of Course project	
12	Review 2 of Course project	
13	Final review of course project	
14	Submission of report on learning of	
	MOOC course and course project.	

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks	
	IIIdiks	IVIAI KS	
ISA-1 (Theory)	30		
ISA-2 (Theory)	30	33	
Lab Activity	50	34	
Tota	67		

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	33	

BACK

Prog	Program: Bachelor of Engineering							
Course Title: Computer Vision Course Code: 24ECA								
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3hrs/week					
ISA Marks: 50		ESA Marks: 50	Total Marks: 100					
Teaching Hrs: 30		Tutorial/Practical: 0hrs	Exam Duration: 3 hrs					
		Unit – I						
1	Introduction: Computer Vision Overview, Pixels and image representation, Filters: Linear systems, Convolutions and cross-correlations; Lab: Basics, Filters							
2	Features and filtering: Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and fitting: RANSAC Local features, Harris corner detection, Feature descriptors: Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges, Features							
3	Semantic segmentation part I: Perceptual grouping, Agglomerative clustering, Super pixels and over segmentation							
Unit – II								
4	Semantic segmentation part II: Clustering: K-means, Mean shift; Visual Bag of Words: Texture features, Visual bag of words; Lab: Resizing, clustering, recognition.							
5	Motion: Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT) tracker; Lab: Object detection, optical flow.							
6	Advanced Techniques: Image stitching, Image pyramids, Object recognition, Dimensionality reduction, Face identification, Detecting objects by parts.							

Reference Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.
- 2. D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India, 2nd Ed, 2015.
- 3. R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd Edition, 2004.

Laboratory Plan

Expt. No.	Experiments	No. of Slots
1	Introduction to Computer Vision: Basics, Filters	2
2	Features and filtering :Filters, Edges, Features	2
3	Features and filtering :Filters, Edges, Featurescontd	2
4	Semantic segmentation :Resizing, clustering, recognition	2
5	Semantic segmentation :Resizing, clustering, recognitioncontd	2
6	Object detection, optical flow	2
7	Motion :Object detection, optical flow	2

Evaluation Scheme In-Semester Assessment Scheme

Assessment Conducted for marks Marks ISA-1 (Theory) 30 ISA-2 (Theory) 30 33 Lab Activity 50 34 Total 67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	33	

BACK

Program: Bachelor of Engineering				
Course 7	Title: Reinforcement Lea	arning	Course Code: 22ECAE	312
L-T-P: 3-	L-T-P: 3-0-0 Credits: 3 Contact hrs.: 3hrs/we		ek	
ISA Mar	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching hrs.: 40 Tutorial/Practical: Exam Duration: 3 hrs.				
		Unit –I		
Introduction: Overview of machine learning, Supervised learning vs. unsupervised learning vs. reinforcement learning, Elements of reinforcement learning: agent, environment, reward, policy, value function, Markov decision processes (MDPs).			5 hrs	
2		ing: Policy evaluation ous dynamic programming	•	5 hrs
3	Monte Carlo methods: Monte Carlo policy evaluation, First-visit and every-visit MC, On-policy vs. off-policy learning.			5 hrs
Unit –II				
4 Temporal-difference learning: TD(0) prediction, Sarsa and Q-learning, Eligibility traces.			5 hrs	
Function approximation: Linear function approximation, Non-linear function approximation, Deep neural networks.			6 hrs	
Policy gradients: Score function and policy gradient theorem, REINFORCE algorithm, Actor-critic methods.			6 hrs	
		Unit –III		
7 Exploration-exploitation trade-offs: Epsilon-greedy, Boltzmann exploration, Upper confidence bound (UCB), Thompson sampling.			3 hrs	
8	Dueling DQN, Policy applications of Reinfo	learning: Deep Q-networl gradient methods with fu prcement Learning.	, ,	5 hrs
Text Boo	ok:			

1. "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto (2nd edition, MIT Press, 2018).

Reference Books:

- 1. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.
- 2. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
- 3. Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (pp. 1889-1897).

Evaluation Scheme (ISA)

SL. No.	Section	Conducted for marks	Weightage in Marks
5.	ISA -I	30	25
6.	ISA – II	30	23
7.	Lab Evaluation	20	10
8.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
3.	Theory Exam (ESA)	60	25
		20	
4.	Lab Exam (ESA)	20	25
		10	

BACK

Prog	gram: Bachelor of Engineer	ing		
Course Title: Bioinformatics Course Code: 22EG				CAE314
L-T-F	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs			/week
ISA I	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teac	Teaching Hrs: 40 hrs Tutorial/Practical: Exam Duration: 3 hrs.			hrs.
		Unit –I		
	Biological Database: Defi	nition, components, multid	lisciplinary nature,	
	and applications of bioinf	formatics; Databases: Intro	duction, meaning,	
1	types and characteristics	of databases, types of data	tabases, Biological	07 hrs
_	database: Classification, I	Primary Database: Ligand I	Database, Enzyme	07 1113
	database, human diseas	se database, microbial ar	nd viral, genome	
	database, structure visual	ization tools.		
	-	,	significance, and	
	applications; Types of pai	irwise sequence alignment	: Local and Global	
		pairwise sequence alignn	-	
2		features of dynamic prog		8 hrs
		Wunsch Algorithm, Local A	·	
		d Word method: BLAST, PSI	•	
	and FASTA; Substitution m	natrices: PAM and BLOSUM	; gap penalties.	
	Unit –II			
		nent: Meaning, significance	• • • • • • • • • • • • • • • • • • • •	
	_	ssive Alignment methods,		
3		Alignment: Profile Analysi	-	07 hrs
		tif analysis, Statistical metho	ods or Probabilistic	
	models; Multiple Sequence			
		Meaning and significan	•	
	-	terminology, types of pl		
	. , ,	enetic models, Phylogene	,	
		ata model, and extraction of ution models: Models of 9		
4		els of Among- Site S		08 hrs
-		f Substitution Rates Betw		00 1113
		stance based methods: Ne		
		n (FM) method; Character		
		iximum Likelihood; Tree Ev		
	Phylogenetic Softwares.	Aminam Ememiood, free Ev	aradion memous,	
	,	Unit –III		
		J III		

	Gene Prediction: Gene structure, Prokaryote and Eukaryote gene			
5	prediction, Prokaryote and Eukaryote promoter site prediction Gene 05 hr			
	Prediction tools, Genomic database, Next Generation Sequencing.			
	Protein Prediction: Protein structures: Secondary Structure: Alpha			
	helix, beta Sheets, phi & Drotein Ramachandran plots. Protein			
6	Structure Prediction: Use of sequence patterns and Amino acid; Protein	05 hrs		
6	Secondary Structure Prediction methods: Chou-Fasman, neural	US IIIS		
	network, and nearest neighbor method; Tertiary Structure Predictions:			
	Homology modeling; Protein sequence and structure analysis:			

Text Books:

- 1. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd, Wiley-Inte, 2005.
- 2. David Mount, Bioinformatics: Sequence and Genome Analysis , 2nd, Cold Sprin, 2004.

Reference Books:

- 1. P. Rastogi, N. Mendiritta, S. C. Rastogi, Bioinformatics: Methods and Applications: Genomics,
- 2. Anand Solomon K, Molecular Modelling and Drug Design, 1st, MJP Publis, 2015

Evaluation Scheme (ISA)

SL.	Section	Conducted for	Weightage in
No.	Section	marks	Marks
9.	ISA -I	30	25
10.	ISA – II	30	25
11.	Lab Evaluation	20	10
12.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
5.	Theory Exam (ESA)	60	25
		20	
6.	Lab Exam (ESA)	20	25
		10	

BACK

Prog	Program: Bachelor of Engineering				
Cour	Course Title: Computer Graphics Course Code: 22ECAE315				
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 hrs/			/week	
ISA Marks: 50 ESA Marks: 50 Total Marks: 100					
Teaching Hrs: 40 Tutorial/Practical: Exam Duration: 3 I			Hrs		
		Unit –I			
	Introduction: Image Pro	ocessing as Picture Analysis,	The Advantages of		
1	Interactive Graphics. I	Representative Uses of Co	omputer Graphics,	06 hrs	
_	Classification of Applica	tions. Development of Hard	ware and Software	00 1113	
	for Computer Graphics,	Conceptual Framework for I	nteractive Graphics		
	Basic Raster Graphics A	lgorithms for Drawing 2d Pr	imitives: Overview,		
2	Scan Converting Lines, S	can Converting Circles, Fillin	g Rectangles. Filling	08 hrs	
-	Polygons, Filling Ellipse	Arcs, Pattern Filling, Thick P	rimiives, Line Style	00 1113	
	and Pen Style.				
3		rld: Clipping Lines, Clipping (Circles and Ellipses,	06 hrs	
	Clipping Polygons. Antia	Unit –II			
	Coometrie Objects and		Points and Vostors		
	_	Transformations: Scalars, Faitives Coordinate Systems a			
		a Colored Cube, Affine			
4		nd Scaling, Transformation		07 hrs	
			_		
	Coordinates, Concatenation of Transformations, OpenGL Transformation Matrices				
		Computer Viewing, Viewing	with a Computer.		
		era Simple Projections, Proj	•	_	
5		l, Interactive Mesh Displays,	•	07 hrs	
		rojection Matrices, Projectio	-		
-	•	Polygon Meshes, Parame		06 h=0	
6	Hermit curves, Bezier cu			06 hrs	
		Unit –III			
7		ter, Light Sources, The Phon	g Reflection Model,	05 hrs	
		s , Light Sources in OpenGL			
	, , ,	ding, Approximation of a S	•	_	
8 Subdivision Specification of Materials in OpenGL, Shading of the Sphere 0					
	Model Global Illumination				
	Text Books:				
1	1. Computer Graphics: Principles and Practice, James D. Foley, Andries van Dam,				
		F. Hughes ,2 nd Edition, Pear			
2	2. Interactive Computer Graphics - A Top-Down Approach Using OpenGL (5/e),				

Edward Angel, 5th Edition, Pearson Education, 2009

Reference Books:

- 1. Computer Graphics using OpenGL, F. S. Hill Jr. and S. M. Kelley, 3rd Edition ,Pearson Education, 2009
- 2. Computer Graphics with OpenGL, D. D. Hearn and M. P. Baker, 3rd Edition Computer Graphics, Peter Shirley, Steve Marschner, Cengage Learning, 2009

Evaluation Scheme (ISA)

SL.	Section	Conducted for	Weightage in
No.	Section	marks	Marks
13.	ISA -I	30	25
14.	ISA – II	30	23
15.	Lab Evaluation	20	10
16.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
7.	Theory Exam (ESA)	60	25
		20	
8.	Lab Exam (ESA)	20	25
		10	

BACK

Program: Bachelor of Engine		T		
Course Title: Multimedia Co	mputing	Course Code: 22ECA	E316	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/wee		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 Tutorial/Practical: Exam Duration: 3 Hr			rs	
	Unit −I			
Introduction to multin	nedia: Global structure of Mul	ltimedia, Multimedia		
Application, Medium, I	Multimedia system and prope	rties, Characteristics	04 hrs	
of a Multimedia S	ystem, Challenges for M	ultimedia Systems,	04 1113	
Components of a Mult	media System			
Sound / Audio Systen	: Concepts of sound system	, Music and speech,	06 hrs	
Speech Generation, Sp	eech Analysis, Speech Transm	nission	00 1113	
3 Images and Graphics:	Digital Image Representation	, Image and graphics	06 hrs	
Format, Image Synthesis, analysis and Transmission.			00 1113	
Unit –II				
Video and Animation	Video and Animation: Video signal representation, Computer Video			
Format, Computer- Ba	Format, Computer- Based animation, Animation Language, Methods of			
	controlling Animation, Display of Animation, and Transmission of			
Animation.				
Content Analysis: Sim	ple Vs. Complex Features; A	nalysis of Individual	08hrs	
Images; Analysis of Images	age Sequences; Audio Analysi	s; Applications.		
	Unit –III			
7 User Interfaces: Basic	Design Issues, Video and	Audio at the User	04 hrs	
Interface, User-friendli	Interface, User-friendliness as the Primary Goal.			
Multimedia Application	Multimedia Application: Media preparation and composition, Media			
integration and comm	integration and communication, Media Entertainment, Telemedicine, E-		04 hrs	
learning, Digital vid	eo editing and production	on systems, Video	041113	
conferencing, Video-or	n-demand			
Text Books:				

1. Multimedia: Computing, Communications and Applications, Ralf Steinmetz and Klara Nahrstedt, Pearson Education Asia.

Reference Books:

- 1. Multimedia Communications, Applications, Networks, Protocols and Standards, Fred Halsall, Pearson Education Asia
- 2. Multimedia Systems, John F. Koegel Buford, Pearson Education Asia

Evaluation Scheme (ISA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	ISA -I	30	25
2.	ISA – II	30	23
3.	Lab Evaluation	20	10
4.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	Theory Exam (ESA)	60	25
		20	
2.	Lab Exam (ESA)	20	25
		10	

BACK

Program: Bachelor of Engineeri	ng			
Course Title: Ethics in AI Course Code: 23ECA		E325		
L-T-P: 3-0-0	Credits: 3 Contact Hrs: 3hrs/weel		eek	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Tutorial/Practical:	Exam Duration: 3 hr	'S	
	Unit –I			
Introduction to Ethical	AI: Cause and Effect: Algori	thms, AI and Model		
1 Outcomes, Rules for AI:	training and constraints, E	thical AI: Cause and	6 hrs	
Effect.				
Artificial Intelligence Da	ta Fairness and Bias: Fairnes	ss and protections in		
2 machine learning, Fairne	machine learning, Fairness and protections in machine learning, building		7 hrs	
fair models, minimizing b	fair models, minimizing bias in data.			
Unit −II				
Artificial Intelligence Pri	Artificial Intelligence Privacy and Convenience: Privacy and convenience			
3 vs big data, Protecting	ng Privacy: Theories and	Methods, Building	6 hrs	
Transparent Models				
Al Fairness: Individual fa	airness, Group fairness, Cou	interfactual fairness,		
4 Fairness in natural lang	guage processing, Fairness	in computer vision,	6 hrs	
Deepfakes, Federated lea	Deepfakes, Federated learning			
Unit –III				
Artificial Intelligence Et	thics in Action: Case Study	: Al for Healthcare	5 hrs	
Domain, Al for Edge Devi	ice, AI for Agriculture, AI for	NLP	21113	
Text Books:				

1. Coeckelbergh, Mark. Al ethics. MIT Press, 2020.

Reference Books:

1. Boddington, Paula. Towards a code of ethics for artificial intelligence. Cham: Springer, 2017.

Evaluation Scheme (ISA)

SL.	Section	Conducted for	Weightage in
No.	Section	marks	Marks
1.	ISA -I	30	25
2.	ISA – II	30	23
3.	Lab Evaluation	20	10
4.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	Theory Exam (ESA)	60	25
2.		20 20 25	
	Lab Exam (ESA)		25
		10	

BACK

Progran	n: Bachelor of Engi	neering		
Course Title: Augmented and Virtual Reality Course Code: 25ECA				\E303
L-T-P: 2	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/v		veek	
ISA Mai	ks: 67	ESA Marks: 33	Total Marks: 100	
Teachin	g Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 h	rs
1	Working VR in Unity: Unity XR, headset and controller tracking, loss of tracking, Unity core APIs related to XR functionality			6 hrs
2	Interaction and Locomotion: interact with objects in VR, scene exploration, teleportation, and grab and throw interactions, how to avoid causing nausea and dizziness for your user.			6 hrs
3	VR UX with the Unity API: Text Issues in VR, Optimizing Text Readability, Attaching Displays to a Controller, Interacting with Canvas Elements			8 hrs
4	_	ned Objects with Tracking, You, Triggering Canvas Ev		8 hrs

References

1. Virtual Reality Technology, Gregory C. Burdea & Philippe Coiffet, John, 2nd Edition, 2013 Wiley & Sons, Inc., ISBN: 978-0-471-36089-6

Creating Virtual Controls That Mimic Real World Controls.

- 2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, 2nd Edition, 2006. ISBN: 978-0-471-36089-6
- 3. Greengard, Samuel. Virtual reality. Mit Press, 2019.

Lab Experiments

SI. No	Experiments	No of Slots (2 hrs/per week)
1	(AR) app development in Unity entailsthat overlay digital	1
1	elements onto the real world.	
2	Create a 3D object and apply different geometric	1
2	Transformations using Mouse/Keyboard	
3	Create animation for a 3D object (transformation, color,	1
	texture, etc.)	
4	Bouncing ball on multiple 2D/3D platforms	1
5	Develop First Person Controller to a Scene	1
6	Create a 3D Character movement	1

7	Create a menu driven interface for adding and removing	1
	objects from a Scene	
8	Build a cubic room, whose sides are made out of six planes.	1
	The room should be 15x15x15 Unity units. At the center of	
	the roof of the room, place a point source of light. This light	
	should change color by pressing the Tab key.	
9	Course Project	4

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	ı	67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Prog	ram: Bachelor of Enginee	ering		
Cour	se Title: Parallel Comput	ing	Course Code: 22ECA	320
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teac	Teaching Hrs: 40 Tutorial/Practical: Exam Duration: 03 hr			rs
		Unit –I		
	Introduction to Parallel	Computing & Parallel Prog	gramming Platforms:	
	Motivating Parallelism, S	Scope of Parallel Computing	g, Implicit Parallelism:	
1	Trends in Microprocesso	or Architectures, Limitation	s of Memory System	8 hrs
1	Performance, Dichotom	ny of Parallel Computing	Platforms, Physical	0 1113
	Organization of Paralle	l Platforms, Communicati	on Costs in Parallel	
	Machines.			
	Principles of Parallel A	lgorithm Design: Prelimina	aries, Decomposition	
2	Techniques, Character	istics of Tasks and Int	eractions, Mapping	8 hrs
	Techniques for Load Balancing, Methods for Containing Interaction		01113	
	Overheads, Parallel Algo	rithm Models.		
		Unit –II		
	Analytical Modeling of Parallel Programs: Sources of Overhead in			
	Parallel Programs, Performance metrics for parallel systems, The effect			
3	of Granularity on perfor	mance, Scalability of Paralle	el Systems, Minimum	8 hrs
	execution time and min	imum cost optimal execut	ion time, Asymptotic	
	analysis of Parallel progr	rams, Other Scalability Met	rics.	
	Programming Using t	he Message Passing Para	adigm: Principles of	
	Message – Passing Pro	gramming, The Building B	locks, and MPI: The	
4		terface, Overlapping Co		8 hrs
	Computation, Collective Communication and Computation Operations,			
	Groups & Communicato			
	I	Unit –III	,	
	Pthreads and Synchro	onization: Thread Basics,	POSIX Thread API,	
5	Synchronization Primit	ives in Pthreads, Contr	rolling Thread and	4 hrs
,	Synchronization Attri	butes, Thread Cancel	lation, Composite	7 1113
	Synchronization Constru	icts.		
	OpenMP: Open MP pro	gramming model, Specifyi	ng tasks in openMP,	
6	Synchronization constru	cts in opn MP, Data handli	ng in OpenMP, Open	4 hrs
0	MP library functions, En	vironment variables in Ope	nMP, Explicit Thread	7 1115
	versus OpenMP based p	rogramming.		

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

Evaluation Scheme (ISA)

SL. No.	Section	Conducted for marks	Weightage in Marks	
1.	ISA -I	30	25	
2.	ISA – II	30	23	
3.	Lab Evaluation	20	10	
4.	Course Project	30	15	
		Total	50	

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
1.	Theory Exam (ESA)	60	25
		20	
2.	Lab Exam (ESA)	20	25
		10	
		Total	50

<u>BACK</u>

Progra	am: Bachelor of Engineerin	g		
Course Title: Computational Medicine Course Code: 24ECS			E340	
L-T-P:	T-P: 2-0-1 Credits: 3 Contact Hrs: 4hrs/we		eek	
ISA M	arks: 67	ESA Marks: 33	Total Marks: 100	
Teach	ing Hrs: 30	Tutorial/Practical: 30 hrs	Exam Duration: 2 hr	'S
		Unit –I	l	
Introduction to Cell Organization: Cell Theory, Prokaryotic and Eukaryotic Cells, Organelles, Cell Membrane, Cell Cycle, Tissue, Organs, Organ Systems, Homeostasis		•	5 hrs	
2	Systems Biology: Systems Biology, Modelling Biological Systems, Network Biology, Omics Technologies, Systems Biology Applications.		5 hrs	
3	Riological Natworks: Protein-Protein Interaction Natworks (PRINS) Gane		5 hrs	
Unit –II				
Molecular Interactions: Protein-Protein Interactions, Protein-DNA Interactions, Protein-Ligand Interactions, Molecular Dynamics Simulations.			5 hrs	
Introduction to modelling health and disease: Principles of Computational Physiology, Integrating Molecular Networks into Physiological Models, Animal Models and Human Translation			5 hrs	
6 Introduction to Computational Anatomy: Case Studies: Computational Anatomy of the Brain and Computational Anatomy of the Heart		5 hrs		
Text Books: NA				
Reference:				
1.	 Lecture Notes and Handouts 			

- 2. Some reference papers / Slides/ Videos

Hands-On - Probable Lab Work

• Lab sessions on cell observation (microscopy) and tissue analysis. Group projects on modelling biological systems. Case studies on diseases related to cellular dysfunction. Bioinformatics exercises using publicly available datasets. • Computational exercises in network analysis using available software tools. • Case studies of network-based drug discovery and development. • • Data mining and analysis of biological network datasets. Integration of network analysis with experimental validation. Hands-on experience with computational modelling software. • Development of simplified models to understand core concepts. • Analysis of real-world data to parameterize and validate models. Collaboration with experimental biologists and clinicians. Hands-on experience with medical image processing software. Development of image analysis pipelines for specific clinical problems. Application of machine learning techniques for image analysis.

FMCD2009 / 2.0 124

Collaboration with clinicians for data interpretation and clinical validation.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	ı	67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Networking and Security

Program: Bachelor of Engineering					
Course Title: Cloud Computing Course Code: 24ECAE338					
L-T-P	L-T-P:2-0-1 Credits: 3 Contact Hrs: 4 hrs/week				
ISA N	ISA Marks: 67 ESA Marks: 33 Total Marks: 100				
Teac	Teaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 2 hrs				
Unit –I					
	Introduction: Moti	ivation for cloud computin	g, elastic computing and its		
1	advantages: Busine	ss models for cloud providers	s, Types of clouds: multi-cloud,	4 hrs	
1	cloud platforms. Da	ata center infrastructure: N	etwork equipment and multi-	4 1115	
	port server interfac	es, Leaf spine network topol	ogy.		
	Virtualization and	l containerization: Virtual	Machines: approaches to		
	virtualization, level	s of trust, live migration of	virtual machines. Advantages		
2	and disadvantages	of virtual machines, isolat	ion facilities in an operating	4 hrs	
	system, Linux name	espaces used for isolation, co	ontainer approach for isolated	41113	
	apps, Docker conta	iners, Docker software comp	oonents, items in a Dockerfile.		
	Monolithic applications in a data center.				
	Automation and Orchestration: Automation in data centers, levels				
	automation, zero to	ouch provisioning and Infras	tructure as code, automation		
3	tools, Orchestration: Automation with a larger scope, Kubernetes: An example				
3	container orchestra	container orchestration system, Kubernetes cluster model, Kubernetes pods:			
	creation, templates	s, and binding time, Kuberne	etes nodes and control plane,		
	worker node softwa	are components.			
Unit –II				1	
		• •	vantages and disadvantages of		
4		•	nunication protocols used for	4 hrs	
	· ·	· ·	Microservices, creating a		
	Microservices, serv				
	-	•	ng: Traditional client-server		
		_	nment, Serverless computing		
5		,	Architecture of a Serverless	3 hrs	
	infrastructure, An example of Serverless processing, advantages and				
	disadvantages of Serverless computing.				
	-	•	evOps tools: Puppet, Chef and		
6				3 hrs	
	Playbooks, Ansible	for IT automation.			

Text Books:

- 1. Douglas Comer, "The Cloud Computing: The Future of Computing", 1st ed, Chapman and Hall/CRC 1 July 2021.
- 2. Dan C. Marinescu, Cloud Computing Theory and Practice, 3rd Edition, Elsevier February 15, 2022.

Reference Books:

- 1. Rajkumar Buyya, Christian Vecchiola, S.ThamaraiSelvi, Mastering Cloud Computing, McGraw Hill, 2013.
- 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, McGraw Hil, 2010.

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of tutorial Slots per batch
1	Hypervisors (Type-I and Type-II). Virtual machines with Para/Full Virtualization	03
2	Implementation of cloud service models (IaaS,PaaS,SaaS)	03
3	Live Migration of VM's and containerization using dockers	02
4	Building Kubernetes cluster	02
5	Create Microservice based web service	02
6	Ansible for IT automation.	02

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Prog	Program: Bachelor of Engineering				
Cou	Course Title: Data Integration and Cloud Services Course code: 24ECAE319			\E319	
L-T-F	-T-P: 1-0-2 Credits: 3 Contact hrs: 5hrs/week		reek		
ISA I	SA Marks: 67 ESA Marks: 33 Total Marks: 100				
Teac	ching Hrs: 15	Tutorial/Practical: 56hrs	Exam Duration: 2 h	rs	
	Data Integration for Developers: Introduction to PowerCenter, Folders,				
	Sources, and Targets, De	sign Objects, File Lookups,	Relational Lookups,	3 hrs	
1	Database Joins in Power(Center, Workflow Logic, Me	rging, Routing, and	31113	
	Sorting Data, Command	Tasks, Debugging, Paramet	erization, Updating		
	Database Tables, Mapple	ts, Mapping Design Worksh	op, Addendum.		
	PowerCenter Architectu	re and Transformations:	PowerCenter 10		
	Architecture, Parameter	Files, User-Defined and A	dvanced Functions,		
	Pivoting Data, Dynam	ic Lookups, Stored Pro	cedure and SQL		
2	Transformations, Troubleshooting Methodology and Error Handling,			4 hrs	
	Transaction Processing,	Transaction Control Transfo	rmation, Recovery,	4 1115	
	Command Line Progr	ams, Performance Tuni	ng Methodology,		
	Performance Tuning	Mapping Design, Mem	ory Optimization,		
	Performance Tuning: Pipe	eline Partitioning.			
	Cloud Application Integration Services: Overview of Cloud Application				
	Integration, Understand	the Basics: Process Desig	ner, Working with		
3	Assets, Adding Web Servi	ces to a Process, Fault Hand	ing, Introduction to	4 hrs	
	Guides Designer, API	Management, CAI and	CDI Integration,		
	Troubleshooting, Tips & Tricks, Best Practices.				
	Cloud Data Integration S	Services: Informatica Cloud	Overview, Runtime		
	Environments and Conne	ections, Synchronization Ta	sk, Cloud Mapping		
4	Designer, Cloud Mapp	ing Designer – Transfor	mations, Mapping		
7	Parameters, Expression I	Macro and Dynamic Linking	g, Replication Task,	4 hrs	
	Masking Task, Mass Inges	stion Task, Task flows, Hierar	chical Connectivity,		
	Intelligent Structure Model.				
Text	Text book:				
1 Learning Informatica PowerCenter 10 X Second Edition Rabul Malewar					

1. Learning Informatica PowerCenter 10.X, Second Edition, Rahul Malewar, Publisher: Packt, 2017.

Reference book:

1. Data Mining Concepts and Techniques, Third Edition, Jiawei Han, Micheline Kamber, Jian Pei, Publisher: Elsevier, 2012.

SI. No.	Experiments	Number of slots
1.	Demonstration on PowerCenter tool	2
2.	Exercise on workflow creation and perform transformations.	3
3.	Structured Enquiry on given case Study to deploy workflow for a real-world scenario	5
4.	Written exam on theoretical concepts	1
5.	Course project	3

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in Marks
	marks	iviarks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	Total	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Cours	se Title: Cyber Security		Course Code: 24ECA	E337	
	3-0-0	Credits: 3	Contact Hrs: 3hrs/w	eek	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100 al: Ohrs Exam Duration: 3 hrs		
Teach	ning Hrs: 40	Tutorial/Practical: Ohrs			
		Unit –I			
	Chapter 1			8hrs	
	Introduction to Cyber S	Security: Overview of Cyb	ersecurity, Importance		
1	and Goals of Cybersecuri	ty, Cybersecurity Threat La	ndscape, Cybersecurity		
	Fundamentals, Overview of Domain-specific Security, Threat Intelligence				
	and Incident Response.				
	Chapter 2			7hrs	
	Cyber-crimes and Cybe	r Laws: Classification of c	cyber-crimes, Common		
	'	computers, mobiles, crim	<u> </u>		
		s, social engineering, malv			
2		ck attacks, cybercrimina	•		
	_	easures, legal perspectiv			
	· •	ences, organizations dealin	g with cybercrime and		
	cybersecurity in India, ca	ise studies.			
		Unit –II			
	Chapter 3			8hrs	
	•	rity: Identifying and protec	ting critical web assets,		
	Network and Web Security : Identifying and protecting critical web assets, cookies, wireless network vulnerabilities, Application software and data				
•	cookies, wireless netwo	rk vulnerabilities, Applicat	ion software and data		
3		rk vulnerabilities, Applicat top 10 threats, Mitigating			
3	integrity issues, OWASP		web risks, Overview of		
3	integrity issues, OWASP	top 10 threats, Mitigating	web risks, Overview of		
3	integrity issues, OWASP network security, Multi	top 10 threats, Mitigating	web risks, Overview of	7hrs	
3	integrity issues, OWASP network security, Multi Detection Systems Chapter 4	top 10 threats, Mitigating	web risks, Overview of irewalls and Intrusion	7hrs	
3	integrity issues, OWASP network security, Multi-Detection Systems Chapter 4 Security Operations: Security	top 10 threats, Mitigating ilevel Security Models, F	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key	7hrs	
3	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Respons Technology), Cyberthrea	top 10 threats, Mitigating ilevel Security Models, Ficurity Operations Centre (Sessibilities, SOC Components and the impact of a Breach	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security	7hrs	
4	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Response Technology), Cyberthrea and Establishing a Basin	top 10 threats, Mitigating ilevel Security Models, Figurity Operations Centre (Sesibilities, SOC Components and the impact of a Break seline, Fundamental Security	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security urity Capabilities and	7hrs	
	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Respons Technology), Cyberthrea and Establishing a Basindustry Threat Mode	top 10 threats, Mitigating ilevel Security Models, Figurity Operations Centre (Security Operations Centre (Security Operations Components and the impact of a Bread Seline, Fundamental Security, Standards, Guideline	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security urity Capabilities and	7hrs	
	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Response Technology), Cyberthrea and Establishing a Basin	top 10 threats, Mitigating ilevel Security Models, Figurity Operations Centre (Security Operations Centre (Security Operations Components and the impact of a Bread Seline, Fundamental Security, Standards, Guideline	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security urity Capabilities and	7hrs	
	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Respons Technology), Cyberthrea and Establishing a Basindustry Threat Mode	top 10 threats, Mitigating ilevel Security Models, Figurity Operations Centre (Security Operations Centre (Security Operations Components and the impact of a Bread Seline, Fundamental Security, Standards, Guideline	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security urity Capabilities and	7hrs	
	integrity issues, OWASP network security, Multiple Detection Systems Chapter 4 Security Operations: Security Operations: Security Operations and Respons Technology), Cyberthrea and Establishing a Basindustry Threat Mode	top 10 threats, Mitigating ilevel Security Models, Figurity Operations Centre (Security Operations Centre (Security Operations Components and the impact of a Bread Seline, Fundamental Security, Standards, Guideline	web risks, Overview of irewalls and Intrusion OC) Fundamentals, Key ts (People, Processes, ch, Investing in Security urity Capabilities and	7hrs	

	Chapter 5	5hrs
	Development of SOC: SOC Maturity Model, Key SOC Functions: Threat	
	Detection, Incident Response, Forensics, Planning and Designing a SOC	
5	Facility, Network Considerations for SOC, Disaster Recovery & Business	
	Continuity in SOC.	
	Chapter 6	5hrs
	.Security Information and Event Management (SIEM): Key SIEM	
6	Components, Introduction to SIEM solutions, Key Features, SIEM	
6	Architecture, Log collection methods, Incident Detection in SIEM:	
	Detecting Malware, Phishing, Insider Threats, Automated Incident	
	Response with SIEM and SOAR.	

References:

- 1. Cybersecurity Essentials by Charles J. Brooks, Christopher Grow, Philip Craig, and Donald Short was published on October 5, 2018.
- 2. Principles of Information Security by Michael E. Whitman and Herbert J. Mattord (7th edition) was published on June 27, 2021.
- 3. Computer Security: Principles and Practice by William Stallings and Lawrie Brown (4th edition, Global Edition) was published on June 21, 2018.

Lab Experiments:

Expt./Jo b No.	Brief description about the experiment/job	No. of Lab. Slots per batch (estimate)
1.	Demonstration of attacks like DDoS, Password	2
	Cracking	
2.	Web Application Vulnerable to Cross-Site Scripting	1
	(XSS)	
3.	Implementation of Multi-Factor Authentication	1
4.	Firewall Functionality and Traffic Control	1
	Demonstration	
5.	Intrusion Detection System (IDS) Demo using Snort	2
	or Suricata	
6.	Design and Implementation of Signature-Based IDS	1
7.	Firewall Functionality and Traffic Control	1
	Demonstration	

8.	Configuring Identity and Access Management (IAM)	1
	in OpenStack	
9.	Securing a Web Application Deployed on a Cloud VM	1
10.	Demonstration of SIEM, Log Analytics, and Threat	2
	Detection	
11.	Threat Detection and Automated Response using	1
	SIEM and SOAR	

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Prograi	m: Bachelor of Engin	eering		
Course	Course Title: Web Security Course Code: 24ECA			E302
L-T-P: 2	2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Ma	rks: 67	ESA Marks: 33	Total Marks: 100	
Teachir	eaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 2 hrs		6	
		Unit –I		
	Introduction: Secu	rity Vulnerabilities, Threats	and Risk, protecting	
1	assets, Cookies, W	ireless network vulnerabilitie	es, Identification and	7 hrs
	authentication failu	res, Application software and	data integrity issues,	7 1113
	Website security, or	nline business risks		
	Mitigating website	risks, Threats and Vulnerabil	ities: Accepting user	
2	input on your website, OWASP top 10 threats, Additional web threats		8 hrs	
	not in top 10, Mitigating web risks, Threats and Vulnerabilities			
		Unit –II		
	Web Application S	ecurity: Web services, Com	mon website attacks,	
	Common website weaknesses, Best practices for mitigating web attacks			
3	and weaknesses, Security regulations, standards and guidelines, Types		7 hrs	
	of information sec	urity, Mitigating risk in web a	applications, Security	
	actions to protect websites			
	Developing Secure	websites and web applicati	ons: Accepting user	
	input into your wel	osite, Functional websites, Dev	elopment processes,	
4	4 Layered security strategies, Incorporating security requirements within			
	SDLC, Using secure and unsecure protocols, Best practices for securing			
web applications, Website Vulnerability and Security Assessment				
		Unit –III		

Text Books:

1. Mike Harwood, Ron Price, "Internet and Web Application Security", 3rd ed, Jones and Bartlett Publishers, Inc, 2022.

Reference Books:

- 1. Hoffman, A. Web Application Security: Exploitation and Countermeasures for Modern Web Applications, O'Reilly Media, 2020.
- 2. OWASP Foundation, OWASP Top 10: Web Application Security Risks, 2021

Lab experiments:

Expt./Jo b No.	Brief description about the experiment/job	No. of Lab. Slots per batch (estimate)
1.	Develop a webpage with XSS vulnerability, show script injection, and suggest prevention methods.	1
2.	Create an online store and explain security measures for protecting sensitive data.	1
3.	Build a login system to show risks of weak passwords and implement MFA.	1
4.	Develop a web app with OWASP Top 10 flaws and apply mitigation strategies.	2
5.	Design an app exposing insecure storage and poor error handling, then apply fixes.	1
6.	Create an app demonstrating confidentiality, integrity, and availability in information security.	1
7.	Build a secure app using input validation, authentication, access control, and encryption.	1
8.	Show the difference between using HTTPS and HTTP in a web application.	1
9.	Exploit back-end and SQL flaws in a web app and discuss mitigation.	1
10.	Create a web app complying with WCAG, GDPR, and consumer protection laws.	2

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	l	33

BACK

Prograi	m: Bachelor of Engine	eering			
Course	Title: Security Opera	tions	Course Code: 25ECAE33	80	
L-T-P: 2	?- 0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Ma	rks: 67	ESA Marks: 33	Total Marks: 100		
Teachi	ng Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs		
		Unit −I			
	Introduction: Secu	rity Operations Center (SOC)	Fundamentals, Key SOC		
	Roles and Respo	nsibilities, SOC Component	s (People, Processes,		
1	Technology), Cybert	threats and the impact of a Bre	ach, Investing in Security	7 hrs	
-	and Establishing a	a Baseline, Fundamental Se	curity Capabilities and	7 1113	
	Industry Threat I	Models, Standards, Guidelir	ies, and Frameworks,		
	Vulnerabilities, Risk & Business Challenges,				
	Development of SOC: SOC Maturity Model, Key SOC Functions: Threat				
	Detection, Incident Response, Forensics, Planning and Designing a SOC				
2	Facility, Network Considerations for SOC, Disaster Recovery & Business		8 hrs		
	,	OC, Security Consideration	ons, Guidelines and		
	Recommendations				
	1	Unit –II			
	SIEM: Key SIEM Components, Introduction to SIEM solutions, Overview				
3	-	SIEM Architecture, Log collec	ction methods, Security	7 hrs	
	Event Correlation and Rule Writing				
	Incident Detection and Response: Incident Detection in SIEM: Detecting				
5	Malware, Phishing, Insider Threats, Detecting Lateral Movement (MITRE		8 hrs		
		k), Incident Response: Autom	·		
	with SIEM and SOA	R, Generating and Managing SI	EM Alerts		

Text Books:

1. J. Muniz, A. Lakhani, O. Santos, and M. Frost, The Modern Security Operations Center: The People, Process, and Technology for Operating SOC Services, 1st ed. O'Reilly Media, 2021.

Reference Books:

- 1. R. MacDougall and R. Lain, The Security Operations Handbook: Managing a SOC and Detecting Threats, Packt Publishing, 2021.
- 2. E. Al-Shaer, Automated Security Operations: Threat Hunting, Detection, and Response at Scale, Pearson, 2020.

Laboratory Plan

Expt No.	Name of the Experiment	No. of tutorial Slots per batch (estimate)	
1	Installing and configuring WAZUH.	01	
2	Configure log sources and forwarding logs to SIEM component.	01	
3	Log collection methods and analysis.	01	
4	Malware detection.	01	
5	Intrusion detection.	01	
6	Phishing attack analysis.	01	
7	Insider threat monitoring.	01	
8	Network attack detection.	01	
9	SIEM alert management.	03	
10	SIEM reports.	04	

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Prog	ram: Bachelor of Engi	neering		
Cour	ourse Title: Software Defined Networks Course Code: 25ECAE331			
L-T-P	2: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40		Exam Duration: 3 hrs	
		Unit –I		
	Introduction: Evolvi	ng network requirements,	Types of Network and	
1	Internet Traffic, The	SDN approach, Data Center N	letworking: Big Data over	8 hrs
	SDN, Cloud Networki	ng over SDN.		
	SDN Data Plane ar	nd OpenFlow: Data plane	functions and protocols,	
2	OpenFlow logical net	work device, OpenFlow proto	ocol, OpenFlow messages,	8 hrs
	OpenFlow events: Responding to switches.			
Unit –II				
3	Control Plane: SDN Control plane architecture, POX architecture		ture, POX architecture,	8 hrs
,	OpenDaylight archite	ecture, REST, Mininet based ex	kamples	0 1113
	Programming SDNs	s: Components in POX,	POX APIs, Registering	
4	Components, The Event System: Handling Events, Creating Your Own Event			8 hrs
•	Types, Raising Events, Binding to Components' Events, Working with			0 15
	packets, Working wit	h sockets: ioworker, OpenFlo	w in POX.	
		Unit –III		
	• •	n plane: SDN Application P	•	
5	Engineering, Measur	rement and Monitoring. Sec	urity Requirements, SDN	4 hrs
Security.				
	Network Functions Virtualization (NFV): OpenFlow VLAN Support, Virtual			
6	Private Networks, Network Virtualization: A Simplified Example, Network		4 hrs	
	Virtualization Architecture, Benefits of Network Virtualization.			

Text Books:

- 1. William Stallings, "Foundations of modern networking: SDN, NFV, QoE, IoT and Cloud", Addison Wesley; 1 edition, 2015.
- 2. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks", O'Reilly, 2013.

Reference Books:

- 1. Sreenivas Voruganti, Sriram Subramanian, "Software-Defined Networking (SDN) with OpenStack", Packt Publishing, 2016.
- POX manual current documentation, https://openflow.stanford.edu/display/ONL/POX+Wiki.html

BACK

Prog	ram: Bachelor of Engi	ineering		
Cour	Course Title: Edge Computing Course Code: 25ECAE332			
L-T-P	T-P: 2-0-1 Credits: 3 Contact Hrs: 3 hrs/week			
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100	
Teac	hing Hrs: 30		Exam Duration: 3 hrs	
		Unit −I		
	Introduction: Defin	ition and key concepts, Diffe	rence between edge, fog	
1	and edge computing	g Importance and benefits (of edge computing, Case	8 hrs
	studies and real-wor	ld applications, Edge computi	ng architecture.	
	Edge Computing Te	chnologies: Edge hardware	and devices: IoT devices,	
	gateways, edge serv	ers, Sensors and actuators, e	edge hardware platforms,	
2	Software for Edge Computing: operating systems and middleware, edge			8 hrs
	computing platforms and frameworks, development tools and SDKs.			01113
	Wireless technologies for edge: for Wi-Fi, Zigbee, LoRa, 5G, mmWave, LiFi.			
	Communication protocols: MQTT, CoAP, AMQP, BLE			
		Unit −II		
	Edge Cloud: Introduc	ction to Edge Data Center, us	se cases and applications,	
3	Lightweight edge	edges and its services, E	dge architectures using	8 hrs
	Kubernetes, Edge Ne	etworking: 5G Architecture, SI	ON, NFV, SFC and AI.	
	Mobile Edge Com	puting (MEC): Architecture	, computational model,	
4	offloading policy, Integration of MEC into 5G/6G, Case study, Applications			8 hrs
and Challenges, simulation t		ulation tools, MEC for industri	al IoT, Edge intelligence at	01113
	device, edge and core layers using ML/FL.			
Text Books:				

- 1. Yan Zhang, "Mobile Edge Computing", 1st Edition, Springer, 2021.
- 2. Buyya R., Srirama S.N., "Fog and Edge Computing", Wiley, 2019.

Reference Books:

- 1. Sabella D., Reznik A., Frazao R., "Multi-access Edge Computing in Action", 1st edition, 2019
- 2. Al-Turjman F. (ed.): "Edge Computing: from hype to reality", Springer, 2019.

Lab Experiments:

Expt No.	Name of the Experiment	No. of tutorial Slots per batch (estimate)	Marks
1.	Kubernetes Setup – Single node	01	
2.	EdgeXFoundry for IoT Data Analysis	01	
3.	LF Edge Demo	01	
4.	KubeEdge Evaluations	01	5

5.	Edge Application Deployment on KubeEdge- IoT	01	
6.	Edge Application Deployment on KubeEdge- Video Streaming	01	5
7.	MEC- Edge device, Edge node and private 5G integration	03	
8.	Open Ended Activity	04	10

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	Ε0	2.4
Lab Activity	50	34
Tota	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

System and Software Development

Pro	gram: Bachelor of Engineer	ring		
Cou	Course Title: Advanced Java Programming Course Code: 24ECAE		AE329	
L-T-	-P:2-0-1	Credits: 4	Contact Hrs: 5hrs/week	
ISA	Marks: 67	ESA Marks: 33	Total Marks: 100	
Tea	ching Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 l	nrs
Unit –I				
	Java Database Connec	tivity (JDBC) – Introduction	on to JDBC,JDBC	
1	Architecture and Types of Drivers, Steps to Connect with a Database,			04 hrs
2	Java Servlets – Introduction to Web Applications, Servlet Life Cycle Developing a Simple Servlet, Handling Request and Response (GET, POST), Session Tracking Techniques: Cookies, URL Rewriting, Http Session, Servlet Config and Servlet Context, Deployment using Apache Tomcat			06 hrs
3	JavaServer Pages (JSP) — Introduction to JSP,JSP Life Cycle, JSP Tags: Directives, Scriptlets, Expressions, Implicit Objects, JSP vs Servlets, Using JSP with JDBC, Introduction to JSTL and EL (Expression Language)			06 hrs
Unit –II				
MVCArchitecture — Understanding Model-View-Controller Pattern, Integrating Servlet and JSP using MVC, Form Handling in MVC, Simple MVC-based Web Application			04 hrs	
5	Spring Boot Essentials – Introduction to Spring and Spring Boot, Features			06 hrs
6	Methods (GET, POST, PUT Boot, Exception Handling	Security Basics — Introduction, DELETE), Creating RESTful Security REST, Introduction to Spiring REST APIS, Role-Based h Secured APIS	ervices with Spring ring Security, Basic	04 hrs

Text Books:

- 1. Kathy Sierra, Bert Bates, Head First Java, 2nd Edition, O'Reilly Media, 2005.
- 2. **Budi Kurniawan**, Servlets and JSP: A Tutorial, 2nd Edition, Brainy Software, 2005.
- 3. Craig Walls, Spring in Action, 5th Edition, Manning Publications, 2018.

Reference Books:

- 1. **Herbert Schildt**, *Java: The Complete Reference*, 11th Edition, McGraw-Hill Education, 2018.
- 2. **Y. Daniel Liang**, *Introduction to Java Programming and Data Structures*, 11th Edition, Pearson, 2017.
- 3. **Rod Johnson**, *Expert One-on-One J2EE Development without EJB*, Wrox Press, 2004.

- 4. Paul Deck, Spring Boot: Up & Running, O'Reilly Media, 2021.
- 5. **Leonard Richardson, Mike Amundsen, Sam Ruby**, *RESTful Web APIs*, O'Reilly Media, 2013.

Expt/ Job No.	Experiment/ Job details	No. of Lab
		sessions/batch
1.	Introduction to JDBC: Architecture, Database Connectivity, Executing Basic Queries	01
2.	JDBC CRUD Operations using Statement and Prepared Statement, Handling ResultSet	01
3.	Exception Handling in JDBC and Mini Java Database Application	01
4.	Creating a Simple Servlet, Handling HTTP GET and POST Requests	01
5.	Session Management in Servlets: Cookies, URL Rewriting, Http Session	01
6.	JSP Fundamentals: Directives, Scriptlets, Expressions, and Implicit Objects	02
7.	Using JSP with JDBC: Mini Dynamic Web App with JSTL and EL	01
8.	MVC Architecture: Form Handling and Integration of Servlet and JSP	02
9.	Introduction to Spring Boot: REST API Development with CRUD using Spring Data JPA	02
10.	Securing REST APIs with Spring Security: Basic Authentication and Role-Based Access	02

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Prog	ram: Bachelor of Eng	gineering			
Cou	rse Title: Blockchain	and Distributed Ledgers	Course Code: 24ECAE339		
L-T-F	P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA I	Marks: 67	ESA Marks: 33	Total Marks: 100		
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs		
		Unit –I			
	Introduction: Overview of block chain, Digital Money to Distributed				
	Ledgers, Design Pri	mitives: Protocols, Security,	Consensus, Types of block		
1	chain, block chain	platforms, Block chain Arch	nitecture, Block chain Use	06 hrs	
	Cases: Finance, E-Governance, Supply chain management, Healthcare				
	management and cyber security.				
	Cryptography Basi	i cs: Introduction to cryptog	raphy, Public key crypto:		
2	Introduction, RSA, Public key infrastructure, Hash Functions: Properties of			06 hrs	
	Hash Functions, SHA, Digital signature Schemes, Merkle trees.				
	Consensus Mechanisms and Mining: Consensus in Distributed Systems,				
	Consensus mechanisms in Permission less blockchain: Proof of Work, Proof				
3	of Stake (POS), Proof of Activity, Delegated POS, Proof of Elapsed Time.			06 hrs	
	Consensus mechanisms in Permissioned Blockchain: RAFT, Practical				
	Byzantine Fault Tolerance (PBFT), Scalability of consensus algorithms.				
	Unit –II				
	Ethereum and Sma	art Contracts: Ethereum tra	nsactions, accounts, smart		
	contracts, smart contract development, Solidity basics, basic contracts,				
4	distributed storage and IPFS, Ethereum scaling, Applications of Ethereum			06 hrs	
	Smart contracts: Tokens and Token Standards, Fungible and Non-Fungible				
	Tokens, crowd funding				
	Enterprise Blocko	hain Platforms: Hyperled	ger Fabric: Introduction,		
5	Architecture, Identity, Membership and Peer Management, Chain codes.			06 hrs	
	Corda: Principal Features, Architecture, CorDapp. Consensus Mechanisms in			00 1113	
	Hyperledger Fabric	and Corda.			
D-f-					

Reference Books:

- 1. Imran Bashir "Mastering Blockchain", 3st Edition, Packt Media, 2020.
- 2. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.
- 3. Arshdeep Bhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", 1st Edition, VPT, January 31, 2017.

List of Exercises

Expt./ No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Overview and Demonstration of Ethereum smart contracts	1
2.	Solidity programming- Data types, control structures and functions	1
3.	Deploying contract using external blockchain using Metamask/Myetherwallet	1
4.	Creating custom Ethereum blockchain using Geth	1
5.	Connecting to Geth node using Web3	1
6.	Create distributed storage using IPFS.	1
7.	Connect IPFS to Ethereum and Hyperledger Fabric	1
8.	Course Project	7

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Total		67

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Program: Bachelor of Engineering				
Cou	ourse Title: Algorithmic Problem Solving Course Code: 24ECSE3		09	
L-T	-P: 2-0-4	Credits: 6	Contact Hrs: 10 hrs/week	
ISA	6A Marks: 50 ESA Marks: 50 Total Marks: 100			
Tea	ching Hrs: 30	Tutorial/Practical: 112	Exam Duration: NA	
	Unit –I			
1	Design Philosophy and Reflections: Algorithm Design Techniques and Principles, Case Studies and Reflections			5 hrs
2	Advanced Data Structures: Tricks and Techniques, Matrix, Grids, Trees and Variants, Lists, Skip lists, Hash, Trie, Union-Find and Variants			5 hrs
3	Dynamic Programming: Common and Typical Problem Sets, Idea and Intuition, Design of DP Problems			5 hrs
4	Array Query: Need, Types and Variants, Design and Philosophy, The Pathway From Lookup Table Fenwick Trees.			5 hrs
5	Search Space Analysis: Search Space, Graph Algorithms, Heuristic Space Analysis			5 hrs
6	Problem Solving: Assortment of Problems, CSES Problem Set			5 hrs

Text Books

- 1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.
- 2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.
- 3. Online Coding Platforms

Reference Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.

Evaluation Scheme (ISA)

SL.	Section	Conducted for	Weightage in
No.		marks	Marks
5.	ISA -I	30	25
6.	ISA – II	30	23
7.	Lab Evaluation	20	10
8.	Course Project	30	15
		Total	50

Evaluation Scheme (ESA)

SL. No.	Section	Conducted for marks	Weightage in Marks
3.	Theory Exam (ESA)	60	25
	Lab Exam (ESA)	20	25
4.		20	
		10	
	50		

Lab Experiments:

Experiment	Concept	Hours
No.		
1	Design Techniques and Reflections	16
2	Mathematics in Competitive Programming	16
3	Dynamic Programming	16
4	Array Query and Case Studies	16
5	Search Space Analysis	16
6	Problem Assortments	16
7	CSES Problem Set	16

BACK

Program: Bachelor of Engineering						
Cours	Course Title: DevOps and MLOps Course Code: 23ECAE3			335		
L-T-P:	0-0-2	Credits: 3 Contact Hrs: 4 hrs/week		Credits: 3 Contact Hrs: 4 hrs/wee		ek
ISA M	arks: 80	ESA Marks: 20	Total Marks: 100			
Teach	ing Hrs:	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs			
	Introduction to DevOps	and Version Control: Overv	iew of DevOps culture			
1	and tools Git basics – cl	one, commit, push, pull, bra	nching, merging Using	6 hrs		
	GitHub/GitLab for collab	ooration				
	CI/CD and Build Automation: Concepts of Git-based workflows, docker,					
2	Jenkins, Git Hub Actions, Building pipelines for applications,			8 hrs		
	Network Automation: Automating infrastructure using Ansible, Terraform,			01113		
	Netmiko ,basics of IaC and zero touch provisioning.					
3	MLOps Foundations – N	Model Training and Versioni	ng: ML model training	4hrs		
3	using tools like MLflow, DVC, TFX, Kubeflow pipelines.		41113			
	ML Experiment Trackii	ng and Model Deploymen	t: Tracking runs with			
4	MLflow – parameters, metrics, artifacts Model serving using Flask/FastAPI		6hrs			
	Testing endpoints with Postman					
	CI/CD for ML and Mo	del Monitoring: Automatin	g ML workflows with			
5	Jenkins or GitHub Actions Model performance monitoring Logging and 8		8 hrs			
	detecting data drift					

Text Books:

- G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations, Portland, OR, USA: IT Revolution Press, 2016.
- 2. N. Forsgren, J. Humble, and G. Kim, accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations, Portland, OR, USA: IT Revolution Press, 2018.
- 3. M. Krief, Learning DevOps: Continuously Deliver Better Software, Birmingham, UK: Packt Publishing, 2019.

Reference Books:

- N. Gift, Python for DevOps: Learn Ruthlessly Effective Automation, Sebastopol, CA, USA: O'Reilly Media, 2020.
- 2. B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability Engineering: How Google Runs Production Systems, Sebastopol, CA, USA: O'Reilly Media, 2016.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In Semester	Assessment	Weightage in Marks	
Assessment (80%)	Exercise (Problem execution, Viva, Observation Book, etc.)	15+15+10 = 40	
	Structured Enquiry	20	
	Course Project	20	
	Total (ISA)	80	
End Semester	Exercise	20	
Assessment (20%)	Total	100	

Lab Experiments:

Sl.no	Details of Experiment	No. of Lab. Slots per batch
1.	Git workflow (clone, commit, push, pull, branch)	1
	Set up a Jenkins pipeline / GitHub Actions workflow	
2.	Containerization with docker: Build, tag, and run containers;	1
	DockerHub push/pull	
3.	Infrastructure as Code: tools like terraform/ansible: Create simple IaC	2
	scripts for deploying web apps	
4.	MLOps with tools like Jupyter, scikit-learn Train and evaluate a basic	2
	ML model	
5.	Tools like DVC: Track data and models with DVC; version control setup	2
6.	ML Flow: Track and compare multiple training runs	2
7.	CI/CD for ML Models, Jenkins/GitHub Actions, Automate model testing	2
	and deployment	2
8.	Open Ended Activity	4

BACK

Progra	am: Bachelor of Engi	neering			
Cours	e Title: Microservice	Architecture using Java	Course Code: 24ECAE3	04	
L-T-P:	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/wee		k		
ISA M	larks: 67	ESA Marks: 33	Total Marks: 100		
Teach	Teaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 2 hrs				
	Unit –I				
	Fundamentals of	Microservices: Introduct	ion to microservice		
	architecture, bene	fits and challenges, compa	rison with monolithic		
1	architecture, princi	ples of microservice design,	domain-driven design,	6 hrs	
-	service decompos	ition strategies, synchrono	ous vs. asynchronous	0 1113	
	communication, RE	STful APIs and HTTP, messag	ing systems and event-		
	driven architecture				
	_	ces with Java: Introduction to			
	•	e, dependency management v	•		
2	database per service pattern, managing transactions across			6 hrs	
	microservices, event sourcing, service registry and discovery, centralized				
configuration with spring cloud config					
	Unit –II				
	-	Security: Introduction to API	·		
3	API gateway with spring cloud gateway, securing microservices with			6 hrs	
	·	thentication and authoriza	•		
		rvices, Implementing logging,			
		ment: Unit testing and integ	O ,	C hara	
4		I testing strategies, contain		6 hrs	
	orchestration with i	Kubernetes, auto-scaling in clo	oud environments.		
	Casa Studios and B	Unit –III Best Practices: Case studies, a	analysis of architecture		
		,	•		
5	choices, best practices in microservice development, common anti-			6 hrs	
	patterns and how to avoid them, emerging trends and technologies, future of microservice architecture				
Refere	ence Books:	oc di difficolare			
		"Microservice Architecture A	Aligning Principles, Pract	ices, and	
	Culture", O'Reilly M		5	,	
2.	•	en Van Duy, "Microservices	from Theory to Practi	ce", IBM	
_•	Redbooks.	,,		. ,	

- Redbooks.
- 3. Binildas Christudas, "Practical Microservices Architectural Patterns: Event-Based Java Microservices with Spring Boot and Spring Cloud", Apress.
- 4. Christian Posta, "Microservices for Java Developers", O'Reilly Media, Inc.

Lab experiments:

Expt./	Brief description about the	No. of Lab.		Bloom's
Job No.	experiment/job	Slots per batch	Marks	level
		(estimate)		
12.	Setting Up Development	1	-	3
	Environment			
13.	Basics of Java	2	-	3
14.	Building Your First Microservice	1	-	3
15.	Service Communication	1	-	3
16.	Service Discovery	1	-	3
17.	Configuration Management	1	-	3
18.	Securing Microservices	1	-	3
19.	Monitoring and Logging	1	-	3
20.	Exercise	3	20	3

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	34
Tota	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Total		33

BACK

Progra	Program: Bachelor of Engineering			
Cours	e Title: Multicore archite	cture and Programming	Course Code: 25ECAE	334
L-T-P:	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/we		ek	
ISA Marks: 67 ESA Marks: 33 Total Marks: 100				
Teaching Hrs: 40 Tutorial/Practical: 28hrs Exam Duration: 2 hrs				
		Unit –I		
1	Introduction to Multi-core Architecture: Parallel Computing Platforms, Parallel Computing in Microprocessors, Multi-threading on Single-Core versus Multi-Core Platforms, Understanding Performance, Amdahl"s Law, Growing Returns: Gustafson"s Law, System Overview of Threading, Application Programming Models and Threading, Virtual Environment			5 hrs
2	Fundamental Concepts of Parallel Programming: Designing of Threads, Parallel Programming Patterns, Error Diffusion and Analysis, Threading and Parallel Programming Constructs: Synchronization, Critical			5 hrs
3	Shared Memory programming: OpenMP: A Portable Solution for Threading, Managing Shared and Private Data, Loop Scheduling and Portioning, Effective Use of Reductions, Minimizing Threading Overhead, Work-sharing Sections, Performance-oriented Programming, Using Barrier and No wait, Interleaving Single-thread and Multi-thread Execution, Data Copy-in and Copy-out, Protecting Updates of Shared Variables, Intel Task queuing Extension to OpenMP, OpenMP Library Functions, OpenMP Environment Variables, Compilation, Debugging, performance.			5 hrs
Unit –II				
	Distributed memory programming: MPI, Program Architecture, point to point communication, collective communications. Communicating objects, Node management, one sided communications, I/O considerations, combining MPI processes with threads, Timing and performance measurements, MPI Library, Debugging and profiling MPI Programs.			
4	point communication, coll management, one sided processes with threads,	lective communications. Comn communications, I/O conside Fiming and performance measures.	nunicating objects, Node rations, combining MPI	5 hrs
5	point communication, coll management, one sided processes with threads, Debugging and profiling N GPU Programming: Cl compilation process, me	lective communications. Comn communications, I/O conside Fiming and performance measures.	nunicating objects, Node rations, combining MPI surements, MPI Library, xecution model, CUDA n techniques, dynamic	5 hrs
	point communication, coll management, one sided processes with threads, Debugging and profiling N GPU Programming: Compilation process, me parallelism, profiling CUD cipher encryption.	lective communications. Common communications, I/O consider Firming and performance measurements. JDA programming model, Elemory hierarchy, optimization A programs. Case study: Fracted EnACC, HIP, OpenCL basics, Open	nunicating objects, Node rations, combining MPI surements, MPI Library, execution model, CUDA n techniques, dynamic ral set calculation, Block	

Text Books:

- 1. Shameem Akhter and Jason Roberts, Multicore Programming, Increased Performance through Software Multi-threading, Intel Press, 2010
- 2. GerassimosBarlas, "Multicore and GPU Programming: An Integrated Approach Paperback", 1st Edition, Morgan Kaufmann, 2015.
- 3. Robert(Bob) Robey, and Yuliana(Yulie) Zamora, Parallel and High performance computing, Manning publications, 2021.

Lab Experiments:

Expt./Job No.	Brief description about the experiment/job	No. of tutorial Slots per batch (estimate)	Marks
1	Explore OpenMP features, such as task parallelism, loop scheduling, and nested parallelism.	02	NA (Demo)
2	Apply OpenMP to parallelize image processing tasks like blurring, sharpening, or color conversion.	04	20
3	Real word application development using MPI	03	10
4	GPU-based word count, text search using CUDA programming	02	10
5	Add two large vectors in parallel using OpenCL.	01	10

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in	
	marks	Marks	
ISA-1 (Theory)	30		
ISA-2 (Theory)	30	33	
Lab Activity	50	34	
Tota	Total		

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	ĺ	33

BACK

Semester - VII

Prog	ram: Bachelor of Engi	neering	Semester - VII		
Cour	Course Title: Big Data and Analytics Course Code: 24ECAC		104		
L-T-P	: 2-0-1	Credits: 3	Contact Hours: 4 hrs/\	Neek	
ISA N	ISA Marks: 67 ESA Marks: 33 Total Marks: 100				
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs		
Unit –I					
1	Introduction: Overview of Big data, Big Data Characteristics, Different			4 hrs	
	Types of Data. Data A	nalytics, Data Analytics Life Cy	rcle.	41113	
	Big Data Storage: C	lusters, File Systems and Dis	tributed File Systems,		
2	NoSQL, Sharding, Re	plication, Combining Sharding	g and Replication. On	4 hrs	
	_	In-memory Storage Devices			
3		Oocument-oriented, Column-o	riented, Graph-based,	4 hrs	
	MongoDB.				
Unit – II					
4	Big Data Processing: Parallel Data Processing, Distributed Data Processing,			6 hrs	
	Hadoop, Map Reduce, Examples on MapReduce, Spark.				
	Stream Processing: Introduction to Stream Processing-Batch Versus				
	Stream Processing; Examples of Stream Processing; Scaling Up Data				
5	Processing; Distributed Stream Processing; Stream-Processing Model-			6 hrs	
	Sources and Sinks, Immutable Streams Defined from One Another, Transformations and Aggregations, Window Aggregations, Stateless and				
		Aggregations, window Aggre	gations, stateless and		
	Stateful Processing. Unit – III				
	Big Data Analysis: Pig- Introduction, Pig Primitive Data Types - Running				
		_	-		
6	Pig - Execution Modes of Pig — HDFS Commands - Relational Operators - Eval Function - Complex Data Types - Piggy Bank - User-Defined Functions			3 hrs	
	- Parameter Substitution - Diagnostic Operator - Word Count Example				
	using Pig - Pig at Yahoo! - Pig Versus Hive				
		n: Hive – Introduction, Hive A	rchitecture, Hive Data		
_	Types, Hive File Format, Hive Query Language (HQL), RCFile			2 6	
7	Implementation, User-Defined Function (UDF). Serialization and			3 hrs	
	Deserialization.				

Text Books:

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley India Pvt Ltd 2014.
- 3. Gerard Maas and François Garillot, Stream Processing with Apache Spark Mastering Structured Streaming and Spark Streaming, O'REILLY, 2019

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Credit: 1	Big Data and Analytics Lab					
	Preamble:					
	Data is created constantly, and at an ever-increasing rate. Mobile phone					
	social media, imaging technologies to determine a medical diagnosis—all					
	these and more create new data, and that must be stored somewhere for					
	some purpose. Devices and sensors automatically generate diagnostic					
	information that needs to be stored and processed in real-time. Merely					
	keeping up with this huge influx of data is difficult, but substantially more					
	challenging is analyzing vast amounts of it, especially when it does not					
	conform to traditional notions of data structure, to identify meaningful					
	patterns and extract useful information. These challenges of the data deluge					
	present the opportunity to transform business, government, science, and					
	everyday life.					
	Objective: The student should be able to use Big Data and Analytics					
	Frameworks and tools for handling, processing, and analyzing huge datasets.					
	Team size: Group of 3- 4					
	Type: Each batch will work for one distinct application area					

SI.	Experiments	со	Blooms	Timeline	PI	Hrs	Marks
No.	-		level	w.r.t COE	code		
1.	Hadoop Installation Assignment of the following application areas to each batch: 1) Financial Data Analysis 2) Market-Basket Analysis 3) Telecommunication Industry 4) Health Care 5) Agriculture 6) Public Security 7) Bio-informatics Others	CO1	L3	1 st &2 nd week	1.4.1	4	Nil
2.	Problem Identification (10 M) a) Learning the domain (2M) b) Assessment of resources available(2M): i) Data ii) People iii) Technology iv) Time c) Framing the Problem (Identifying Issue to be addressed) (2M) d) Developing Initial Hypothesis (2M) Identifying potential Data sources (2M)	CO1	L3	3 rd Week	2.3.1	2	10
3.	Data/File handling on DFS through NoSQL, Sharding, and Replication	CO2	L3	4 th Week	2.3.1	4	Nil
4.	Data Preparation: (10M) a) Preparing the Analytic Sandbox (2M) b) Performing ETLT (2M) c) Data Conditioning (3M) Data Visualization (3M)	CO2	L3	5 th & 6 th Week	1.4.3	4	10

5.	Design and Model Selection	CO2	L3	7 th & 8 th Week	2.3.1	4	10
6.	Implementation	CO3	L3	9 th , 10 th & 11 th Week	5.3.1	6	10
7.	Presentation and Report	CO4	L3	12 th Week	10.1. 2	2	10
					Total	28	50

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	34
Lab Activity	50	33
Tota	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	33	

BACK

Prog	ram: Bachelor of Engineer	ing	Semester - VII		
	rse Title: Cryptography & N		Course Code: 24ECAC	403	
L-T-P	-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/wee		ek		
ISA N	Marks: 67	ESA Marks: 33	Total Marks: 100		
Teac	hing Hrs: 30	hing Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 2 hrs			
		Unit –I	I		
1	Introduction: Introduct	ion, OSI Security archite	cture, Secure design	6 hrs	
	principles, A model for r	network security, Classic Cry	ypto: Substitution and		
	Transposition ciphers, Tax	conomy of Cryptography and	d Cryptanalysis.		
2	Cryptographic Algorithm	s: Symmetric Key Crypto: S	Stream ciphers, Feistel	6 hrs	
	Cipher, Block Ciphers-AES	S, DES, IDEA, Block cipher m	odes, Asymmetric Key		
	Crypto: Knapsack, Diffie	-Hellman, Elgamal cryptos	system, Elliptic Curve		
	Cryptography				
		Unit –II			
3	Key management and User authentication: Key management: Symmetric 6			6 hrs	
	key distribution, Distribution of public keys, Kerberos, Symmetric key				
	agreement, Public key distribution. User authentication: Overview,				
	Passwords, Challenge response, Zero knowledge proof, Password cracking,				
Biometrics.					
4	Network access control and Cloud Security: Network access control: 6			6 hrs	
	Overview, Network acces	ss enforcement methods, A	Access Control Matrix,		
	Multilevel Security Mo	dels, Multilateral Security	, Firewalls, Intrusion		
	detection system, CI	oud Security: Cloud	Security risks and		
	countermeasures, data p	rotection in cloud, cloud sec	curity as a service.		
	T	Unit –III		1	
5		ort Security Protocols: Intro		3 hrs	
	Privacy and S/MIME, Secure Socket Layer, Transport Layer Security, SSH.				
6	Network and Wireless Security Protocols: IPSec overview, Encapsulating 3			3 hrs	
	security payload, combining security associations, Internet key exchange,				
GSM Security, IEEE 802.11 Wireless LAN Security.					
Text Book					
1	1. William Stallings, Cryptography and Network Security Principles and Practices, 8t				
	Edition, Pearson, 2020				
2	• •	tion Security: Principles and	d Practices", 3 rd Edition	, John	
1	Wiley and Sons. 2021.				

Wiley and Sons, 2021.

References

- 1. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography", 3rd edition, CRC Press, 2020.
- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2015.

Laboratory Plan

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots (each lab 2 hours)
1.	Demo and practice on Crypto Library	2
2.	Implementation of symmetric key algorithm	2
3.	Implementation of Asymmetric key algorithm and Hash functions	2
4.	Course project	8
	Total number of hours	14*2=28

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	34
Lab Activity	50	33
Tota	67	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	33
Tota	33	

BACK

Program: Bachelor of Engineering		Semester - VII
Course Title: Senior Design Project		Course Code: 22ECAW401
L-T-P: 0-0-6 Credits: 6		Contact Hrs: 3 hrs/week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3 hrs

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles - design patterns (creational, behavioral & structural),

User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project Domains:

Networking	Data Engineering	System Engineering
 Internet of Things 	 Data Analytics 	Parallel
 Cloud Computing 	Data Processing:	Computing
• SDN (Software	 Image and video 	• HPC (High
Defined Network)	processing	Performance
 SNA(Social 	 Computer Vision and 	Computing)
Network Analysis)	Graphics	 Parallel system
	 NLP(Natural Language 	design
	Processing)	

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation		
Review-1	Literature Survey, Problem Analysis and Problem formulation		
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.		
Review-3	Implementation and Testing.		

Scheme for End Semester Assessment (ESA)

Sl. No.	Expectation	Marks
1	Write up	05
	1. Problem Statement and Objectives.	
	2. System design with brief description.	
	3. Concluding remarks.	
2	Presentation: Prepare minimum of 15-18 slides of	05
	presentation with consultation of your respective guides.	
3	Demo (Complete execution of the project with results)	30
	and Viva voce.	
4.	Project Report.	10

BACK

Prog	ram: Bachelor of Engine	pering	Semester - VII		
	Course Title: CIPE & EVS Course Code: 15EHS		SA401		
	L-T-P : Audit Credits: Audit Contact Hrs: 2 hrs/w		_		
	Marks: 50	ESA Marks: 50	Total Marks: 100	WEEK	
	hing Hrs: 32	ESA IVIdI KS. 50	Exam Duration: 3 hrs	,	
Teac	illing mis. 32	Unit – I	Exam Duration. 5 ms)	
	Footures of Indian Co.		anotitution Droamble		
	Features of Indian Constitution: Features of Indian Constitution, Preamble to the constitution of India, Fundamental rights under Part III – details of				
	Exercise of rights, Limitations & Important cases. Berubari Union and				
1		Kesavanand Bharati vs. UOI, Ma		4 hrs	
		es Meerza, T.M.A. Pai Foundatio			
	M.C. Mehta vs. UOI etc		,		
		e principles of State Policy: Re	elevance of Directive		
2		olicy under Part IV, Fundame		3 hrs	
	significance. Sarla Muc	lgal v. UOI			
_	Union: Union – Preside	ent, Vice President, Union Counc	il of Ministers, Prime	4 bus	
3	Minister, Parliament &	the Supreme Court of India.		4 hrs	
	State: State – Governors, State Council of Ministers, Chief Minister, State				
4	Legislature and Judiciary.				
	Constitutional Provisi	ons for Scheduled Castes & T	ribes: Constitutional		
5	Provisions for Schedul	ed Castes & Tribes, Women &0	Children & Backward	2 hrs	
	classes, Emergency Pro	ovisions.			
6	Electoral process: Elec	toral process, Amendment proce	dure, 42nd, 44th and	2 hrs	
	86th Constitutional am	endments.		21113	
		Unit – II			
	Scope & Aims of Engi	neering Ethics: Scope & Aims o	of Engineering Ethics:		
7	Meaning and purpose	of Engineering Ethics, Respon	sibility of Engineers,	5 hrs	
	Impediments to respon	nsibility, Honesty, Integrity and r	eliability, risks, safety		
	& liability in engineering. Bhopal Gas Tragedy, Titanic case.				
8	Intellectual Property Rights: Intellectual Property Rights (IPRs)- Patents,		3 hrs		
	Copyright and Designs				
9	<u> </u>	of professional bodies: Ethi	• •	3 hrs	
professional bodies- IEEE, ASME, NSPE and ABET, ASCE etc.					
	recorded to the second	Unit – III	£ la		
		vities on environment: Effects o			
10	environment - Agriculture, Housing, Industry, Mining, and Transportation			2 hrs	
	activities, Environmental Impact Assessment, Sustainability and Sustainable Development.				
	Developinent.				

11	Environmental Protection	n: Environmental	Protection	 Constitutional 	2 hrs
11	Provisions and Environme	ntal Laws in India.			2 1115

Text Books (List of books as mentioned in the approved syllabus)

- 1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005
- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publicaitons, Allahabad, 2010.
- 3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003

References:

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
Minor Exam-1	20
Minor Exam-2	20
Assignment	10
Total	50

BACK

Professional Electives- 4, 5 & 6 Data Intelligence

Program: Bachelor of Engineering				
Course Title: Advanced Computer Graphics Course Code: 22ECA		Course Code: 22ECAE407	7	
L-T-P:	L-T-P: 0-0-3 Credits: 3 Contact Hrs: 6 hrs/v		Contact Hrs: 6 hrs/week	(
ISA IV	larks: 100	ESA Marks: 00	Total Marks: 100	
Teach	ning Hrs:	Tutorial/Practical: 84hrs	Exam Duration: -NA-	
		*No Units		
1	Review of Rasterization	on and Ray tracing	3	hrs
2	Rendering acceleration data structures		3	hrs
3	3 Applications of Texture mapping		3	hrs
4	4 Physically based lighting models, global illumination		3	hrs
5	Multi-pass shading techniques		6	hrs
6	6 Surface design and representation (Implicit and Parametric forms)		metric forms) 3	hrs
7	Mesh Parameterization	n	6	hrs
8	Mesh simplification			hrs
9	Animation		3	hrs
10	Virtual world design			hrs
11	Volume rendering			hrs

Reference Material:

- 1. Peter Shirley, Fundamentals of Computer Graphics, 2009, A. K. Peters
- 2. Tomas Akenine-Moller, Eric Haines, and Naty Hoffman, Real-Time Rendering, 2008, A.K. Peters.
- B. Henrik Wann Jensen, Realistic Image Synthesis Using Photon Mapping, 2001, A.K. Peters.
- Watt A. and M. Watt, Advanced Animation and Rendering Techniques Theory and Practice, 1994, Addison-Wesley.
- 5. Foley, J.D., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, ISBN 0-201-12110-7. (Errata)
- 6. Neider, J., T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley, ISBN 0-201-63274-8.
- 7. Blinn J., A Trip Down the Graphics Pipeline. Jim Blinn's Corner, Morgan Kaufmann.
- 8. Luebke D., M. Reddy, J. Cohen, A. Varshney, B. Watson, R. Huebner, Level of Detail for 3D Graphics, 2003, Morgan-Kaufman.
- Ebert D., F. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A Procedural Approach 2e AP Professional.
- 10. Parent, R., Computer Animation: Algorithms and Techniques Morgan Kaufmann.
- 11. Hoffman, C. Geometric and Solide Modeling Morgan Kaufmann.
- 12. Graphics Gems I-V, AP Professional.

13.

- 14. Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory To Implementation.
- 15. Bretscher, O., Linear Algebra with Applications 2e Prentice Hall.

Scheme for End Semester Assessment (ESA): No ESA for the course

*Content and reference material as shared by IIT Delhi Professor

BACK

Prog	gram: Bachelor of Engin	eering		
Cou	rse Title: Social Networ	k Analysis	Course Code: 24EC	AE405
L-T-F	P: 2-0-1	Credits: 3	Contact Hrs: 4hrs/week	
ISA I	Marks: 66	ESA Marks: 34	Total Marks: 100	
Teac	ching Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
1	Introduction: Introduc	ction: Motivation, different sour	ces of network data,	6 hrs
	types of networks, tools for visualizing network data.		01113	
	Structural properties	of networks: Structural prop	erties of networks:	
2	Notions of centrality,	cohesiveness of subgroups, r	oles and positions,	10 hrs
	structural equivalence	, equitable partitions, stochastic	block models.	
Unit –II				
	Cascading properties of networks: Cascading properties of networks:			
3	Information/influence diffusion on networks, maximizing influence			
	spread, power law and heavy tail distributions, preferential attachment			10 hrs
	models.			
	-	enon: Small world phenomen	•	
	·	and Randomness, Decentralize	•	
4	•	alized Models, Core-Periphe	•	6 hrs
		tralized Search, Advanced Ma	aterial: Analysis of	
	Decentralized Search.			
Unit –III				
5		ning Graphs- I: Community an	d cluster detection:	4 hrs
	random walks.			
6	Mining Graphs- II: Mining Graphs- II: Spectral methods; link analysis for			4 hrs
	web mining.			

Text Books:

- 1. Stanley Wasserman, Katherine Faust, Social network analysis: methods and applications, Cambridge University Press, 1994.
- 2. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.

Reference Books:

- 1. Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Oxford University Press, 2003.
- 2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	33
Total		66

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	34
	Total	34

BACK

Progra	am: Bachelor of Engineer	ring			
Course	Course Title: Information Retrieval Course Code: 24ECAE40			CAE406	
L-T-P:	2: 2-0-1 Credits: 3		Contact Hrs: 4 hrs/week		
ISA M	arks: 66	ESA Marks: 34	Total Marks: 100		
Teach	ing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2	Hrs	
		Unit –I			
1	Introduction to IR: Nat	ture of unstructured and sem	ni-structured text,	4 hrs	
	Inverted index and Boo	ean queries, Index Constructi	on.	71113	
2	Basic IR Models: Vecto	r space, Term Frequency / In	verted Document	4 hrs	
	Frequency (TF-IDF), Probabilistic, Vector space scoring.				
3	Query Operations: Relevance feedback, Query expansion.		6 hrs		
Unit -II					
4	Performance Evaluation	n: Unranked and ranked ret	rieval evaluation,	4 hrs	
7	test collections, evaluat	ing search engines.		41113	
5	Text Categorization: In	troduction to text classificat	ion, Rocchio, and	4 hrs	
	Nearest Neighbor, Span	n, Sentiment, and Online Adve	rtising.	71113	
6	Text Clustering: Clustering Techniques, Analysis & Validation,			2 hrs	
	Application Scenarios for Search Results and Database Clustering			2 1113	
		Unit –III			
7	Search Engine and Link	Analysis: Web search basics,	Web crawling and	5 hrs	
	indexes. Search engine	techniques, PageRank, Hubs a	nd Authorities	3 1113	

Text Books:

- 1. Manning, Raghavan and Schutze, Introduction to Information Retrieval, Cambridge University Press, 2009.
- 2. B.Croft, D.Metzier and T. Strohman, "Search Engines Information Retrieval in Practice", Addison Wesley, 2009.

Reference Books:

- 1. D. Grossman and O. Frieder, "Information Retrieval: Algorithms and Heuristics", Springer, 2004.
- 2. Ceri. S Bozzon, A; Brambilla, M; Della Valle, E; Fraternali, ;Quarteroni, S "Web Information Retrieval", 2013.

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	33
Total		66

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	34
	Total	34

BACK

Progra	am: Bachelor of Engineeri	ng		
Course	Course Title: Multimodal Learning Course Code: 25ECAI			E416
L-T-P:	2-0-1 Credits: 3		Contact Hrs: 4hrs/week	
ISA Ma	arks: 66	ESA Marks: 34	Total Marks: 100	
Teachi	ing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 3 hr	'S
		Unit –I		
	Introduction: Introduc	tion to modalities(Text,A	udio and Image),	
1	Foundational principles	in multimodal-Modalities	are Heterogeneous,	3 hrs
	Modalities Interact			
	Multimodal Representa	tions: Challenges in multimo	dality learning, Joint	
2	Multimodal Representation, Shallow multimodal representations, Deep			6 hrs
	Multimodal auto encoders, Deep Multimodal Boltzmann machines,			01113
	Multimodal Joint Repres	entation.		
3	Multi-modal alignmer	nt: Explicit multimodal-a	alignment, Implicit	6 hrs
	multimodal-alignment, T	emporal sequence alignmen	t.	0 1113
		Unit –II		
4	Multimodal Fusion: Mo	del Free-Early, late, hybrid,	Model Based-Neural	6 hrs
	Networks			0 1113
5	Multimodal Generation: Translation, Creation and Summarization		6 hrs	
	Multimodal Application	ons: Multimodal Image/	video descriptions,	
6	Multimodal VQA, Multi	modal speech synthesis, N	Multimodal emotion	3 hrs
	recognition, Multimodal	image/video retrival.		

References:

- 1. Jean- Philippe Thira, Ferran Marques, Hervk Bourlard, Multimodal Signal Processing Theory and Applications for Human-Computer Interaction, Academic Press, 2010.
- 2. M Yang, B Rosenhahn, V Murino, Multimodal Scene Understanding: Algorithms, Applications and Deep Learning, Academic Press Inc, 2019

Practical	Title	No. of Lab sessions/batch
1.	Multimodal Classification with Image + Text + Audio	02
2.	Multimodal video segmentation	02
3.	Multimodal sentiment analysis	02
4.	Multimodal alignment based application	02
5.	Multimodal generation based applications	02
6.	Course activity	02

Evaluation Scheme Scheme of ISA Evaluation Scheme

Assessment	Weightage in Marks
ISA Theory	33
ISA Lab	33
Total	66

Scheme for Semester End Examination (ESA)

Assessment	Weightage in Marks
ESA Theory	34
Total	34

BACK

Prog	ram: Bachelor of Enginee	ring		
Cou	rse Title: Quantum Compu	iting	Course Code: 25EC	AE421
L-T-F	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40	Tutorial/Practical:	Exam Duration: 3h	rs
		Unit –I		
	Introduction and Backg	round: Overview, Compute	ers and the Strong	
4	Church-Turing Thesis, 1	he Circuit Model of Com	putation, A Linear	C laura
1	Algebra Formulation of	the Circuit Model, Reversik	ole Computation, A	6 hrs
	Preview of Quantum Phy	sics, Quantum Physics and C	Computation	
	Linear Algebra and the	Dirac Notation: The Dirac N	otation and Hilbert	
2	Spaces, Dual Vectors, O	perators, The Spectral The	orem, Functions of	6 hrs
2	Operators, Tensor Produc	cts, The Schmidt Decomposit	ion Theorem, Some	0 1113
	Comments on the Dirac I	Notation		
3	Introduction to Quantum Toolbox in Python: Installation, Basics and			4 hrs
Quantum mechanics				
Unit –II				
	Qubits and the Framev	vork of Quantum Mechan	ics: The State of a	
4	Quantum System, Time	e-Evolution of a Closed S	System, Composite	6 hrs
-	Systems, Measurement, Mixed States and General Quantum Operations,			0 1110
		e, General Quantum Operat		
		Computation: The Quant	•	
5	Quantum Gates, 1-Qubit Gates, Controlled-U Gates, Universal Sets of		6 hrs	
	Quantum Gates, Efficiency of Approximating Unitary Transformations,			
	·	nents with Quantum Circuits		
6	_	xploring Python for Solving	Problems / Projects	4 hrs
using Quantum Computing.				
	Unit -III			
7	Introductory Quantum Algorithms: Probabilistic Versus Quantum Algorithms Phase Kick back The Doutseh Algorithm The Doutseh Joseph			
7				
	Algorithm, Simon's Algorithm Case Studies and Projects done during the course: Image processing,			
8	Data Sciences, Machine I	_	. image processing,	4 hrs

Text Books

- 1. Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing", Oxford University, Press, 2007
- 2. User Guide Quantum Toolbox in Python, Release 4.2.0 Qutip.org

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	,

BACK

Prog	ram: Bachelor of Engi	neering		
Cour	se Title: Agentic Al		Course Code: 25ECAE4	126
L-T-P	P: 2-0-1	Credits: 3	Contact Hours: 4 hrs/\	Neek
ISA N	Marks: 66	ESA Marks: 34	Total Marks: 100	
Teac	hing Hrs: 30	Tutorial/Practical: 28hrs	Exam Duration: 2 hrs	
		Unit –I		
1	proactivity, and goal and agentic systems learning, and act Deliberative, Hybrid)	entic AI: Concept of ager orientation, Difference betwee, Components of agentic AI: pion, Intelligent agent arc gents and Learning and Adapt raph Overview, Agent Architec	n traditional AI models perception, reasoning, hitectures (Reactive, ation of Agents: What	7 hrs
2	Reinforcement learn	ing in agentic systems, Learn leta-cognition and self-adapta	ing from environment	8 hrs
		Unit – II		
3	Agentic Planning and Decision Making: Goal modeling and reasoning, Planning under uncertainty, Integrating symbolic and sub-symbolic reasoning, Ethical and value-aligned decision making in agents.			7 hrs
4	frameworks like Lang	LM Agents: Implementing LLM gChain, CrewAl and AutoGen. brokent Learning for Edge Add	Human-Agent	8 hrs

Text Books:

- 1. "Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig (4th Edition, 2020)
- 2. "An Introduction to MultiAgent Systems" by Michael Wooldridge (2nd Edition, 2009)
- 3. "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto (2nd Edition, 2018)

Reference Books:

- 1 "Programming Multi-Agent Systems in AgentSpeak using Jason" by Rafael H. Bordini et al. (2007)
- 2"Artificial Intelligence: Foundations of Computational Agents" by David L. Poole and Alan K. Mackworth (2nd Edition, 2017)

Evaluation Scheme In-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
ISA-1 (Theory)	30	33
ISA-2 (Theory)	30	
Lab Activity	50	33
Total		66

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	34
	Total	34

BACK

Networking and Security

Progra	am: Bachelor of Engineeri	ng			
Cours	e Title: Al for Cyber Secur	ity	Course Code: 25EC	AE419	
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 4hrs/	week	
ISA M	larks: 66	ESA Marks: 34	Total Marks: 100		
Teach	ing Hrs: 30	Tutorial/Practical: 28hrs	cal: 28hrs Exam Duration: 2 hrs		
		Unit –I	L		
	Introduction to Cybers	ecurity: Introduction to Al	for Cybersecurity		
1	Professionals, Evolution	in AI: from expert systems to	data mining, Types	5 hrs	
	of cyber threats: Malwar	re, phishing, ransomware, DI	OoS, Case studies of		
	major cybersecurity incid	dents			
	Detecting Phishing and	Spam Threats with AI: De	etecting spam with		
	Perceptrons, Spam detec	ction with SVMs, Phishing de	tection with logistic		
	regression and decision	trees, Spam detection with I	Naive Bayes, NLP to		
2	the rescue, Malware De	tection using AI: Analysis o	f Malware, Hacking	10 hrs	
	the PE file format, [Decision tree malware de	etectors, Detecting		
	metamorphic malware v	with HMMs, Advanced malv	vare detection with		
	deep learning				
		Unit –II			
	Intrusion Detection Sys	stem with AI: Anomaly de	etection rationales,		
3	Turning service logs into	datasets, Detecting botnet	topology, Different	10 hrs	
	ML algorithms for botne	t detection			
	Fraud Prevention with C	Cloud AI Solutions : Introduc	ing fraud detection		
4	algorithms, Predictive a	nalytics for credit card fra	ud detection, IBM	5 hrs	
	Watson Cloud solutions,	Evaluating the quality of our	predictions		
Text B	Books:				
1. Alessandro Parisi, "Hands-On Artificial Intelligence for Cybersecurity", Pack				ckt	
Publishing, 1st Edition, August 2019					
Refere	ences:				
1. Emmanuel Tsukerman, "Machine Learning for Cybersecurity Cookbook", Pa				Packt	
	Publishing, 2019				
2	2. Clarence Chio, David Freeman, "Machine Learning and Security", O'Reilly			,	
		,	, , - ,		

FMCD2009 / 2.0 174

Publishing, 2018

List of Experiments

Sl.no	Details of Experiment	No. of
		Lab. Slots
		per batch
1	Develop a spam email classifier using perceptrons and evaluate its	1
	accuracy.	
2	Develop a phishing detection model using logistic regression and	1
	decision trees.	
3	Analyze malware by hacking the PE file format and implementing a	2
	detection mechanism.	
4	Create a metamorphic malware detection system using Hidden	2
	Markov Models (HMMs).	
5	Build a dataset from service logs and perform anomaly detection	2
	using ML algorithms.	
6	Detect botnet topology using a chosen machine learning algorithm.	2
7	Compare the performance of various machine learning algorithms for	2
	botnet detection.	
8	Develop a neural network-based DDoS attacks system for real-time	2
	analysis.	

Evaluation Scheme Scheme of ISA Evaluation Scheme

Assessment	Weightage in Marks
ISA Theory	33
ISA Lab	33
Total	66

Scheme for Semester End Examination (ESA)

Assessment	Weightage in Marks
ESA Theory	34
Total	34

BACK

Program: Bachelor of Engineering					
Course Title: Mobile and Wireless Networks Course Code: 22ECA				AE412	
	L-T-P:3-0-0 Credits: 3 Contact Hrs: 3 hrs/v				
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100		
Teacl	Teaching Hrs: 40 Exam Duration: 3 hr			rs	
		Unit –I			
	Introduction: Characteristics of Cellular Systems, Fundamentals of Cellular				
1	Systems, Cellular System Infrastructure, Satellite Systems, Network			4 hrs	
_	Protocols, Ad Hoc Networks, Sensor Networks, Wireless LANs, MANs and				
	PANs.				
	Mobile Radio Pro	pagation: Introduction, Types	of Radio Waves,		
2	Propagation, Mechai	nisms, Free Space Propagation, Lan	d Propagation, Path	6 hrs	
_	Loss, Doppler Effect	Delay Spread, Intersymbol Inter	ference, Coherence	0 1113	
	and width Cochanne	l Interference.	·		
	Cellular Concept:	Introduction, Cell Area. Signal	Strength and Cell		
3	Parameters, Capacity	y of a Cell, Frequency Reuse, How	to Form a Cluster,	6 hrs	
	Cochannel interferer	nce, Cell Splitting, Cell Sectoring.			
	I.	Unit –II			
	Minalage LANI, Infra	and we wadte transposite in a lafter of			
		red vs radio transmissions; Infrast			
4		. – system architecture, protocol ar		8 hrs	
	layer, MAC layer, MAC management, 802.11b, 802.11a, HIPERLAN;				
	Bluetooth				
	4G Networks and Beyond: Evolution from 1G to 4G and beyond; 4G, LTE;				
	LTE OFDMA/SCFDMA; MIMO; LTE duplex; LTE frame and subframe; LTE-M;				
5	LTE-LAA/LTE-U; LTE Advanced – introduction, carrier aggregation,			8 hrs	
	coordinated multipoint, D2D communication; Need for 5G; Technologies				
	enabling 5G – mmWave, massing MIMO, beam-forming, network function				
	virtualisation.				
Unit –III					
	Al for Optimization of WiFi Networks: WiFi Optimization Strategies:				
6	Dynamic Channel Assignment: Algorithms for minimizing interference. Al			4 hrs	
	for Dynamic Channel Assignment, Traffic Prioritization: QoS management			5	
	using WMM (Wi-Fi Multimedia), AI for Traffic Prioritization.				
	Al driven 5G Optimization: Network Slicing: Slice isolation and resource				
7	allocation. GNN for Network slicing, Beamforming: Techniques for			4 hrs	
	improving directional communication, AI for beamforming.				
			0'		

Text Book (List of books as mentioned in the approved syllabus)

- 1. Dharma Prakash Agrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.
- 2. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.
- 3. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited, 2011.

References

- 1. Wireless telecommunications systems and networks by Gray J. Mullet, Cengage Learning, Reprint 2014.
- 2. Upena Dalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. Martyn Mallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.
- 5. Radhika Ranjan Roy, "Networked Artificial Intelligence AI-Enabled 5G Networking, Auerbach Publications, 2024.

BACK

System and Software Development

Program: Bachelor of Engineering Semester -				
Course Title: C# and .NET			Course Code: 25ECAE422	
L-T-P:2-0-1 Cr		Credits: 3	Contact Hrs: 4hrs/week	
ISA Marks: 66		ESA Marks: 34	Total Marks: 100	
Teaching Hrs: 30		Tutorial/Practical: 28hrs	Exam Duration: 3 hrs	
		Unit –I		
2	Visual Studio C# Basics – Data Types, Variables, Operators, Control Statements (if, switch, loops), Arrays, Strings, Enums, Structs Object-Oriented Programming in C#: Classes and Objects, Constructors, Inheritance, Polymorphism, Interfaces, Abstract Classes, Access Modifiers Exception Handling and Collections: try catch finally Cyclem Exceptions			06hrs 04hrs 05 hrs
		Unit –II	<u> </u>	
4	Windows Forms and GUI Programming: Event Handling, Controls (TextBox, Button, Label, etc.), Dialogs, Menu Strip, Timer, List Box, Combo Box			06 hrs
5	ADO.NET and Data Access: ADO.NET Architecture, Connection, Command, DataReader, DataAdapter, DataSet, Performing CRUD with SQL Server			04 hrs
6		Core : Web Applications with AS APIs with ASP.NET Core, Entity	•	05 hrs

Text Books:

- 1. Herbert Schildt, C# 8.0 and .NET Core 3.0, McGraw-Hill Education, 2019.
- 2. Andrew Troelsen and Philip Japikse, Pro C# 8 with .NET Core 3, Apress, 2020.
- 3. Adam Freeman, Pro ASP.NET Core MVC 2, Apress, 2017.

Reference Books:

- 1. Ben Albahari, Joseph Albahari, C# 9.0 in a Nutshell, O'Reilly Media, 2021.
- 2. Christian Nagel, Professional C# and .NET, Wiley, 2021.
- 3. **Joydip Kanjilal**, *Mastering C# and .NET Framework*, Packt Publishing, 2016.
- 4. **Jon Skeet**, *C# in Depth*, 4th Edition, Manning Publications, 2019.
- 5. **Dino Esposito**, *Modern Web Development with ASP.NET Core 3*, Microsoft Press, 2020.

Expt/ Job No.	Experiment/ Job details	No. of Lab sessions/batch
1.	Introduction to C# and Visual Studio – Setting Up the Environment, Basic Syntax, and First Console Application	01
2.	Data Types, Variables, and Operators in C# – Creating Programs that Use Arrays, Strings, and Enums	01
3.	Object-Oriented Programming in C# – Classes, Objects, Constructors, Inheritance, Polymorphism	02
4.	Exception Handling in C# – try-catch-finally, Custom Exceptions, and Debugging Techniques	01
5.	C# Collections – Using List, Dictionary, Stack, Queue, and Generics	01
6.	Windows Forms Application – Designing GUI Applications, Event Handling, Working with Controls (TextBox, Button, ListBox)	02
7.	ADO.NET – Connecting to SQL Server, CRUD Operations with DataReader and DataAdapter	01
8.	ASP.NET Core Web Application – Creating a Simple MVC Application with Razor Pages	01
9.	Building REST APIs with ASP.NET Core – Introduction to Web API, Handling GET, POST, PUT, DELETE	02
10.	Entity Framework Core – Database Integration, Creating Models, and CRUD Operations in ASP.NET Core	02

Evaluation Scheme ISA Scheme

Assessment	Weightage in Marks
ISA Theory	33
ISA Lab	33
Total	66

Evaluation Scheme ESA Scheme

Assessment	Weightage in Marks
ESA Theory	34
Total	34

Program: Bachelor of Engineering					
Cou	Course Title: Robotic Process Automation Design & Course Code: 25ECA				
Dev	Development Course Code. 25EC			HE423	
L-T	L-T-P:2-0-1 Credits: 3 Contact Hrs: 4hrs/v			veek	
ISA	ISA Marks: 66 ESA Marks: 34 Total Marks: 100				
Tea	Teaching Hrs: 30 Tutorial/Practical: 28hrs Exam Duration: 2 h			rs	
		Unit -I			
	Programming Basics	& Recap: Programming	Concepts Basics -		
	Understanding the application - Basic Web Concepts - Protocols - Email				
1	Clients Data Structures - Data Tables - Algorithms - Software Processes -			6 hrs	
-	Software Design - Scripting	ngNet FrameworkNet Fu	ındamentals - XML -	01113	
	Control structures and	functions - XML - HTML -	CSS - Variables &		
	Arguments.				
	Rpa Concepts: RPA Basics - History of Automation - What is RPA - RPA v				
	Automation - Processes & Flowcharts - Programming Constructs in RPA -				
	What Processes can be Automated - Types of Bots - Workloads which can				
2	be automated - RPA Advanced Concepts - Standardization of processes -			10 hrs	
_	RPA Developemt methodologies - Difference from SDLC - Robotic control			10 1113	
	flow architecture - RPA business case - RPA Team - Proccess Design				
	Document/Solution Design Document - Industries best suited for RPA -				
	Risks & Challenges with RPA - RPA and emerging ecosystem.				
		Unit –II			
	Rpa Tool Introduction 8	& Basics: Introduction to RI	PA Tool - The User		
	Interface - Variables - Managing Variables - Naming Best Practices - The				
	Variables Panel - Generic Value Variables - Text Variables - True or False				
	Variables - Number Variables - Array Variables - Date and Time Variables -				
	Data Table Variables - Managing Arguments - Naming Best Practices - The				
	Arguments Panel - Using Arguments - About Imported Namespaces -				
3	Importing New Namespaces- Control Flow - Control Flow Introduction - If				
	Else Statements - Loops - Advanced Control Flow - Sequences - Flowcharts			8 hrs	
	- About Control Flow - Control Flow Activities - The Assign Activity - The				
	Delay Activity - The Do While Activity - The If Activity - The Switch Activity				
	- The While Activity - The For Each Activity - The Break Activity - Data				
	Manipulation - Data Manipulation Introduction - Scalar variables,				
	collections and Tables - Text Manipulation - Data Manipulation - Gathering				
	and Assembling Data				
4	Advanced Automation	Concepts And Techniques	s: Recording and	8 hrs	

Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording - Web Recording - Input/Output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors - Customization - Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation - Information Retrieval - Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel - Extracting Data from PDF - Extracting a single piece of data - Anchors - Using anchors in PDF.

Unit -III

5 Email Automation & Exceptional Handling: Email Automation - Email Automation - Incoming Email automation - Sending Email automation - Debugging and Exception Handling - Debugging Tools - Strategies for solving issues - Catching errors.

8 hrs

Text Books:

1. Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt Publishing

Release Date: March 2018 ISBN: 9781788470940

Reference Books:

- 1. Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation.
- 2. Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant
- 3. Srikanth Merianda, Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation
- 4. https://www.uipath.com/rpa/robotic-process-automation

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No 3	1,2	Solve Any 2
II Q.No4, Q.No5, Q.No 6		3,4	Solve Any 2
III	Q.No7	5	Solve Any 1

BACK

Program: Bachelor of Engineering				
Cou	rse Title: Software Testing		Course Code: 25ECA	E424
L-T-F	L-T-P:3-0-0 Credits: 3 Contact Hrs: 03 hrs/wee		week	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	Teaching Hrs: 40 Exam Duration: 3 hrs			3
		Unit – I		
	Software Testing Principles: Need for testing, The Psychology and			
1	Economics of Program	Testing Program, Inspections	, Walkthroughs, and	4hrs
	Reviews.			
	Test-Case Design: Overvi	ew, White box testing, Error (Guessing, strategies,	
2	Module (Unit) Testing-Ir	ncremental Testing, Top-dow	n versus Bottom-up	6hrs
	Testing, Performing the T	ēst.		
	Higher-Order Testing: Fu	nction testing, System testing	, Acceptance testing,	
3	Installation testing, Test planning and Control, Test completion criteria,			6hrs
	Extreme testing.			
	Unit – II			
	Testing Tools and Stand	lards: Automated Tools for	Testing - Static code	
4	analyzers - Test case generators - GUI Capture/Playback — Stress Testing -			10hrs
•	Testing Client – server applications – Testing compilers and language			101113
	processors - Testing web-enabled applications.			
5	CMM Model and its stages – Introduction to PCMM, CMMI and Six Sigma		6hrs	
	concept – ISO 9000.			
Unit – III				
	-	sting: Introduction to softwar		
6	control – Benefits of quality control - Quality assurance - quality circles and			4hrs
	quality improvement.			
	Introduction to quality	cost – Measuring quality	cost – Total Quality	
7	Management (TQM).Architecture, Process, memory and file management			4hrs
	in Mobile OS, Network O	S.		

Text Books:

- 1. Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The Art of Software Testing", John Wiley & Sons, Second edition, 2004.
- 2. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-HillInternational Edition, Seventh edition, 2009.

References:

- 1. William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons, Secondedition, 2000.
- 2. Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995.
- 3. P.C. Jorgensen, "Software Testing A Craftman's Approach", CRC Press, 1995.
- 4. Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
ı	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7, Q.No8	6, 7	Solve Any 1

BACK

Program: Bachelor of Engineering					
	Course Title: Software Architecture and Design Thinking Course Code: 25ECA				
	P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/v	week	
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100		
Tea	ching Hrs: 40		Exam Duration: 3 h	nrs	
Unit – I					
1	What Is Software Architecture? What Software Architecture Is and What It Isn't, Architectural Structures and Views, Architectural Patterns, What Makes a "Good" Architecture?			5 hrs	
2	Why Is Software Architecture Important? Inhibiting or Enabling a System's Quality Attributes, Reasoning About and Managing Change, Predicting System Qualities, Enhancing Communication among Stakeholders, Carrying Early Design Decisions, Defining Constraints on an Implementation, Influencing the Organizational Structure, Enabling Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a Transferable, Reusable Model, Allowing Incorporation of Independently Developed Components, Restricting the Vocabulary of Design Alternatives, Providing a Basis for Training			6 hrs	
3	The Many Contexts of Software Architecture: Architecture in a Technical Context, Architecture in a Project Life-Cycle Context, Architecture in a Business Context, Architecture in a Professional Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures Influence?			5 hrs	
Unit - II					
4	Understanding Quality Attributes: Architecture and Requirements, Functionality, Quality Attribute Considerations, Specifying Quality Attribute Requirements, Achieving Quality Attributes through Tactics, Guiding Quality Design Decisions			5 hrs	
5	Quality Attributes: Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability, Tactics for Performance, Tactics for Security, Tactics for 6 his Testability, Tactics for Usability.		6 hrs		
6		and Patterns: Architectural Pattern tionships between Tactics and Pat	·	5 hrs	

	Unit – III				
7	7	Architecture and Requirements: Gathering ASRs from Requirements Documents, Gathering ASRs by Interviewing Stakeholders, Gathering ASRs by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs		
8	8	Designing an Architecture, Implementation, Testing and Evaluation Designing: Design Strategy, The Attribute-Driven Design Method, The Steps of ADD, Implementation, and Testing: Architecture and Implementation, Architecture and Testing, Evaluation: Evaluation Factors, The Architecture Tradeoff Analysis Method, Lightweight Architecture Evaluation	4 hrs		

Text Books (List of books as mentioned in the approved syllabus)

- 1. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice (3rd Edition), Addison-Wesley Professional; 3 edition
- 2. Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern- Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2012 (chapter 2)

References:

- 1. Richard N. Taylor, NenadMedvidovic and Eric M. Dashofy: Software Architecture: Foundations, Theory, and Practice, Wiley-India 2012
- 2. Mary Shawand David Garlan: Software Architecture-Perspectives on an Emerging Discipline, Prentice Hall of India, 2007.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
П	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
- 111	Q.No7	7	Colve Any 1 out of 3
III	Q.No8	8	Solve Any 1 out of 2

BACK

Prog	Program: Bachelor of Engineering				
Course Title: Advanced Parallel Computing Course Code: 22ECAE4					
L-T-P	L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/w			week	
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teac	hing Hrs: 40		Exam Duration: 3 hrs	5	
		Unit –I			
	Introduction and History	: GPUs as Parallel Compute	ers; Architecture of a		
	Modem GPU; Parallel Pr	ogramming Languages and	Models; Overarching		
1	Goals; Evolution of Graphics Pipelines; The Era of Fixed-Function; Graphics				
•	Pipelines; Evolution of Programmable Real-Time Graphics; Unified			7 hrs	
	Graphics and Computing Processors; GPGPU; An Intermediate Step; GPU				
	Computing; Scalable GPUs Recent Developments; Future Trends.				
	Introduction to CUDA:	Data Parallelism; CUDA Pr	rogram Structure; A		
	Matrix-Matrix Multiplic	ation Example; Device M	lemories and Data		
2	Transfer; Kernel Functions and Threading; Function declarations; Kernel				
_	launch; Predefined variables; Runtime API.CUDA Thread Organization;				
	Using b1ock Id x and thread Id x; Synchronization and Transparent				
	Scalability; Thread Assignment; Thread Scheduling and Latency Tolerance.				
Unit –II					
CUDA Memories: Importance of Memory Access Efficiency; CUDA Device					
	Memory Types; A Strateg	y for Reducing Global Memo	ry Traffic; Memory as		
3	a Limiting Factor to Pa	rallelism; Global Memory E	Bandwidth; Dynamic	7 hrs	
	Partitioning of SM Resources;			7 1113	
	Data Prefetching; Instruction Mix; Thread Granularity; Measured				
	Performance.				
		L: Introduction to OPENCL			
4		vice Architecture; Kernel	•	9 hrs	
	Management and Kernel	Launch; Electrostatic Potent	ial Map in OpenCL.		
		Unit -III			
5	<u>-</u>	of Game Design, Applie		4 hrs	
	•	struction Molecular Visualiz			
		and Computational Thinkir		4 hrs	
6					
Computational Thinking.					
	Books:				
1.	1. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A				
	Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.				

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
П	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
Q.No7		5	Solve Any 1
'''	Q.No8	6	Solve Ally 1

BACK

Program: Bachelor of Engineering					
Cour	Course Title: Scalable AI Course Code:22ECAE415				
L-T-P	P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/wee	k	
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teac	Teaching Hrs: 40 Exam Duration: 3 Hrs				
		Unit –I			
	Scaling Up Machine Lo	earning: Introduction, M	achine Learning Basics,		
1	Reasons for Scaling Up Machine Learning, Key Concepts in Parallel and Distributed Computing, Platform Choices and Trade-Offs, Thinking about Performance			4 hrs	
2	MapReduce and the New Software Stack: Distributed File Systems, MapReduce, Algorithms Using MapReduce, Algorithms Using MapReduce, Extensions to MapReduce, The Communication-Cost Model, Complexity Theory for MapReduce				
3	Finding Similar Items: Applications of Set Similarity, Shingling of Documents, Similarity-Preserving Summaries of Sets, Locality-Sensitive Hashing for Documents, Distance Measures, The Theory of Locality-Sensitive Functions			6 hrs	
Unit –II					
4	4 Link Analysis: PageRank, Efficient Computation of PageRank, Topic-Sensitive PageRank, Link Spam, Hubs and Authorities.			5 hrs	
5	Frequent Itemsets: The Market-Basket Model, Market Baskets and the A-			6hrs	
6	Clustering: Introduction to Clustering Techniques, Hierarchical Clustering, K-means Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces 5 hrs				
	Unit –III				
7	Parallel Online Learning: Limits Due to Bandwidth and Latency, Parallelization Strategies, Delayed Update Analysis, Parallel Learning 4 hr Algorithms, Global Update Rules			4 hrs	
8	Parallel Large-Scale F	eature Selection: Logist Feature Selection Algorit	,	4 hrs	

Textbooks

- 1. Scaling Up Machine Learning, Bekkerman, R., Bilenko, M., Langford, J., (2011), Cambridge University Press
- 2. Mining of Massive Datasets. 2nd edition. Jure Leskovec, Anand Rajaraman, Jeff Ullman. Cambridge University Press. http://www.mmds.org/

Reference Books

- 1. Hadoop: The definitive Guide. Tom White. Oreilly Press.
- 2. Tensorflow for Machine Intelligence: A hands on introduction to learning algorithms. Sam Abrahams et al. Bleeding edge press.

BACK

Semester - VIII

Industry Internship and Industry Project: Rules and Regulations

<u>Total Duration</u>: 5 months full time (No breaks)

- 1. Students of 8th semester are permitted to opt for full-time Industry Internship.
- 2. Internship duration is for one full semester. Student-intern is available with the Industry for full time
- 3. The internship has 2 mandatory components-- i) Internship- Training and
 - ii) Internship Project
 - i) Internship- Training: Industry is free to decide topics for the training. E.g. topics such as learning tools/ framework/programming language /Industrial practices/ literature survey etc. or any pre- requisites required to carry out the Internship Project.
 - ii) Internship Project: Industry has to assign a well-defined problem statement for the Project and shall provide an industry mentor (called as Industry Guide) to execute the project. University will also assign a University faculty as co-guide (called as University Guide). University guide in consultation with Industry Guide has to review the project progress at regular intervals using Skype/ Webex or personal visit to the industry.
- 4. Expectations at the end of the Internship
 - a) Student has to submit 'Internship Training Report' & 'Internship Project Report' to the University. Contents of the Reports shall be decided in consultation with Industry Guide.
 - b) The industry is expected to provide the student performance evaluation as follows:
 - a) "Internship- Training" Marks (Out of 100)
 - b) "Internship Project" Marks (Out of 100)
 - c) Industry shall issue Internship Certificate to student-intern.

493	
Course Code: 25ECAI493	
week	
s	

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain first-hand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

- **CO 1.** Enhance their employ ability skills and become job ready along with real corporate exposure.
- **CO 2.** Acquire knowledge in one particular technology.
- **CO 3.** Demonstrate leadership ability and responsibility to perform the given task.
- **CO 4.** Offered jobs in the organizations in which they undergo their Industrial Training.
- **CO 5.** Demonstrate common practices, employment opportunities and work ethics in their relevant

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Training	22ECAI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

BACK

Program: Bachelor of Engin	Semester-VIII	
Course Title: Internship Pro	Course Code: 25ECAW494	
L-T-P: 0-0-11	Credits: 11	Contact Hrs: 22 hrs/week
ESA Marks: 50	ISA Marks: 50	Total Marks: 100
Teaching Hrs:		Exam Duration: 3 hrs

Overview of the Course

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Course Learning Outcomes.

- CO 1. Identify the problem and perform requirement analysis
- CO 2. Design potential solutions and evaluate to select optimal solution
- **CO 3.** Apply professional norms of project implementation to meet specified requirements
- **CO 4.** Apply fundamental activities of module, integration and system testing to validate the system
- **CO 5.** Analyze results and present technical/scientific findings effectively through written and oral mode

Scheme for in Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA	Max ESA	Minimum Passing	
Course	course code	marks	marks	Marks	
				Students must	
Industry Project	22ECAW494	50	Γ0	secure minimum of	
Industry Project	ZZLCAVV434	30	50 50	50	40% marks in both
				ISA and ESA.	

BACK

Program: Bachelor of Engineering		Semester - VIII
Course Title: Capstone Project		Course Code: 22ECAW402
L-T-P: 0-0-11	Credits: 11	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs:	Tutorial/Practical: 42 hrs	Exam Duration: 3hrs

Course Content

Eighth Semester Capstone project: Design a suitable solution for the identified problem and apply professional norms of project implementation to meet specified requirements.

Project domains:

Networking	Data Engineering	System Engineering
Internet of Things	Data Analytics	Parallel Computing
 Cloud Computing 	Data Processing:	• HPC (High
• SDN (Software Defined	 Image and video 	Performance
Network)	processing	Computing)
• SNA(Social Network	 Computer Vision and 	• Parallel system
Analysis)	Graphics	design
	NLP(Natural Language	
	Processing)	

Students Assessment through ISA (50%) + ESA (50%)

Internal Semester	Assessment	Weightage in Marks
Assessment* (50%)	Periodic reviews by Project Guide	25
	Periodic reviews by Committee	25
End Semester	Final Review	50
Assessment (50%)	Total	100

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation	
Review-1	Motivation, Literature Survey, Problem Analysis and	
Veniem-1	Problem formulation, Objectives, Oral Communication	
	High Level Design/Methodology, Suitable data structures	
Review-2	and programming paradigm, Modern tools & techniques	
Neview-2	used, Module implementation & amp; integration,	
	Presentation & Report	
Review-3	Complete Project Demo, Report, Presentation / Paper	
Keview-3	Publication	

Scheme for End Semester Assessment (ESA)

Sl. No	Expectation	Marks
1	Literature Survey/ Existing Methods	15
2	Methodology and Implementation details, Results and Discussions	20
3	Project demonstration.	10
4.	Relevance of project to ethical/ social/ legal/ economic concerns	05
	Total	50

BACK

Open Electives

		•			
Progra	am: Bachelor of Engineer	ing			
Cours	Course Title: Distributed and Cloud Computing Course Code: 22ECAO4			101	
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 4hrs/wee	act Hrs: 4hrs/week	
ISA M	arks: 66	ESA Marks: 34 Total Marks: 100			
Teach	ing Hrs: 30	Practical: 28 hrs	Exam Duration: 3 hrs		
		Unit –I			
	Distributed System Mo	dels and Enabling Technologie	es: Scalable Computing		
1	over the Internet, Tech	nologies for Network-Based Sy	stems, System Models	4 hrs	
	for Distributed and Clou	ıd Computing			
	Virtual Machines and	Virtualization of Clusters: Imp	olementation Levels of		
2	Virtualization, Virtua	lization Structures/Tools	and Mechanisms,	4 hrs	
	Virtualization of CPU,	Memory, and I/O Devices,	Virtual Clusters and	4 1113	
	Resources Managemen	t.			
	Cloud Platform Arch	itecture over Virtualized I	Data Centers: Cloud		
3	Computing and Service	Models, Architectural Design o	f Compute and Storage	4 hrs	
	Clouds, Public Cloud Pla	tforms.			
	Unit –II				
	Cloud Programming and	d Software Environments: Fea	tures of Cloud and Grid		
4	Platforms, Parallel and	Distributed Programming Par	radigms, Programming	4 hrs	
	Support of Google App Engine.				
		agement: Policies and mec			
5	management, Applications of control theory to task scheduling on a cloud,			4 hrs	
	Scheduling algorithms for computing clouds. Fair queuing, Start-time fair				
	queuing, Borrowed virtual time.				
	· ·	security risks, Privacy; privac			
6	Trust, Security of virtualization. Security risks posed by shared images,			4 hrs	
	Security risks posed by a management OS, Xoar - breaking the monolithic				
design of the TCB, A trusted virtual machine monitor.					
	Unit –III				
7	Docker Containers: Introduction, Docker swarm, Kubernetes. 3 hrs		3 hrs		
8	Building containerized applications: Microservice architecture, building micro services and containerized applications.			3 hrs	
Toyt B		ac.izea applications.			

Text Books:

- 3. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Parallel Processing to the Internet of Things, Elsevier, 2013.
- 4. Dan C. Marinescu, Cloud Computing Theory and Practice, Elsevier, 2013.
- 5. Nigel Poulton, The Kubernetes Book, Packt Publishing, 2019.

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	33
Total		66

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	34
Total		34

BACK

Program: Bachelor of Engineering				
Course Title: Database Management System Course Code: 22EC		AO404		
L-T-P	-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 hrs/		s/week	
ISA M	SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teach	ning Hrs: 40		Exam Duration: 3 h	rs
		Unit –I		
	Introduction and ER Mo	del: Introduction to DBMS; Dat	ta Models, Schemas	
	and Instances; Three-So	and Instances; Three-Schema Architecture; Database Languages; Using		
	High-Level Conceptual	Data Models for Database D	esign; An Example	
1	Database Application;	Entity Types, Entity Sets, At	tributes and Keys,	08 hrs
	Relationship Types, Rel	ationship Sets. Roles and Stru	uctural Constraints;	
	Weak Entity Types; R	efining the ER Design; ER	Diagrams, Naming	
	Conventions and Design	Issues.		
	Relational Data Mode	el and Relational Algebra:	Relational Model	
	Concepts; Relational Mo	del Constraints and Relational	Database Schemas;	
2	Update Operations and dealing with constraint violations; Unary			08 hrs
_	Relational Operations: SELECT and PROJECT; Binary Relational Operations:			00 1113
		OIN: Additional Relational Op	erations; Relational	
Database Design Using ER- to-Relational Mapping.				
		Unit –II		
3	SQL: SQL Data Definition and Data Types; SQL constraints; DDL and DML		08 hrs	
	-	tions; Complex SQL Queries, PL		
		rmal Design Guidelines for		_
4	Functional Dependencies; Normal Forms Based on Primary Keys; Boyce-			08 hrs
	Codd Normal Form.			
Unit –III				
	Introduction to Trans	action Processing: Introducti	on to Transaction	
5	Processing; Transaction	s and System concepts; Desi	rable Properties of	04 hrs
3	Transactions; Characterizing Schedules Based on- Recoverability,			04 1113
Serializibilty.				
Concurrency Control Techniques: Introduction, Two-phase L			wo-phase Locking	
6	Techniques for Concurrency Control, Dealing with Dead-lock and			04 hrs
	Starvation, Concurrency	control based on Time stamp	Ordering.	0 - 1113

Evaluation Scheme

In-Semester Assessment Scheme

Assessment	Conducted for	Weightage in
	marks	Marks
ISA-1 (Theory)	30	
ISA-2 (Theory)	30	33
Lab Activity	50	33
Tota	66	

End-Semester Assessment Scheme

Assessment	Conducted for marks	Weightage in Marks
Theory	60	34
Total		34

BACK

Prog	Program: Bachelor of Engineering				
	Course Title: High Performance Computing for Course Code:22ECAO40				
Engineering Applications					
			Contact Hrs: 3 hrs/wee	ek	
	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 40		Exam Duration: 3 hrs		
	T	Unit -I			
		erformance Computing: Cor	•		
		ons; characteristics and re	•		
1	•	lexity, Performance: metric		8 hrs	
	•	itioning, Locality: tempora	•		
	•	allel programming, Real-wor	ld case studies like CFD,		
	Bioinformatics, Flow a				
		mputing Systems: Memory			
	Processors: Homoge	_	•		
2	Symmetric Multiprocessors, Vector Computers, Distributed Memory				
	Computers, Supercomputers and Petascale Systems, Application				
	Accelerators / Reconfigurable Computing, Novel computers: Stream,				
multithreaded, and purpose-built					
Unit –II					
	_	Parallel Algorithms: Parallel models: ideal and real frameworks, Basic			
	·	Trees, Pointer Jumping, Divide and Conquer,			
3	Partitioning, Regular Algorithms: Matrix operations and Linear Algebra,				
	Irregular Algorithms: Lists, Trees, Graphs, Randomization: Parallel Pseudo-				
		erators, Sorting, Monte Carlo			
		: Revealing concurrency in	, ,		
4	•	Task Scheduling, Synchronia	•	8 hrs	
	·	Primitives (collective operations), SPMD Programming (threads, OpenMP,			
MPI)					
Unit -III					
	Achieving Perforn	.	formance, Identifying		
5	performance bottlenecks, Restructuring applications for deep memory			4 hrs	
	hierarchies, Partitioning applications for heterogeneous resources, using existing libraries, tools, and frameworks				
	existing libraries, tool	is, and frameworks			

_	Case Studies and Projects done during the course: Various case studies		
6	from various engineering discipline	4 hrs	

Text Books

- 1. Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.
- 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

- 1. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.
- 2. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

Scheme for End Semester Assessment (ESA)

UNIT 8 Questions to be set of		Chapter	Instructions
	20 Marks Each	numbers	
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
111	Q.No7	5	Salva Any 1
III	Q.No8	6	Solve Any 1

BACK

Prog	ram: Bachelor of En	gineering		
Course Title: Essentials of Information Technology Course Code:22ECA				
L-T-P: 0-0-3		Credits: 3	Contact Hrs: 6 hrs/w	
ISA Marks: 80 ESA Marks: 20 Total Marks: 100		Total Marks: 100		
Teaching Hrs: Tutorial/Practical: 84hrs Exam Duration: 3			3 hrs	
		Unit - I		
1	Introduction to computer systems: Components of computer systems, program execution cycle, computer networks, software and its classification, Operating System: introduction, memory management, process management, file management.			6 hrs
2	Programming basics: Introduction to problem solving, SDLC overview and need for object oriented approach, object oriented concepts, introduction to java, control structures, arrays, strings. 6 hrs			
3	Classes and Objects: Class fundamentals, access specifiers, constructors and its types, method overloading, static members. 4 hrs			
		Unit – II		
Data structures: Introduction, Linear data structures: stack, queue, linked lists, Non-Linear data structures: trees, binary search tree, illustration using java collection framework.			5 hrs	
5	Inheritance and Polymorphism: Inheritance: basics, types of inheritance, method overloading and overriding, dynamic method dispatch. 5 hrs			
6	Packages, Interfaces and Exceptions: Introduction to packages, access protection, interfaces, exception handling mechanism, and user defined exceptions. 6 hrs			
		Unit - III		
7	Database Design Process: Characteristics of DBMS, ER model, mapping ER model to relational schema, normalization. 4 hrs			
8	Structured Query Language: SQL data types, database languages, operators, aggregate functions, order by and group by clause, joins and sub queries. 4 hrs			

Text Books:

- 1. Infosys Campus Connect Foundation Program Volume:1–3, Education and Research Department, Infosys Technologies Ltd, 2013.
- 2. Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill, 2012.

Reference Books:

- 1. Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition, Pearson Education, 2011.
- 2. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
I	Project Examination	4 - 8	Project implementation and demonstration 20 marks

BACK

Prog	Program: Bachelor of Engineering				
Cou	Course Title: Software Engineering Course Code: 22ECAO4				
L-T-P: 3-0-0		Credits: 3	Contact Hrs: 3 hrs/week		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 40		Exam Duration: 3 hrs		
		Unit –I			
1	Software Engineering process: Professional software development, Software engineering ethics, Case studies, Software processes: Software process models, Process activities, Coping with change, The rational unified process, Continuous Integration and Continuous Deployment and Tools.			6 hrs	
2	Agile Software Development: Agile methods, Plan-driven and agile development, Extreme programming, Agile project management.			4 hrs	
3	Requirement Engineering: Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirement's elicitation and analysis; Requirements validation; Requirements management.			6 hrs	
	Unit –II				
4	4 System Modeling: Context models, Interaction Models, Structural models, Behavioral models.			6 hrs	
5	Architectural Design: Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.			5 hrs	
6	Object-Oriented design and implementation: Object oriented design using UML, design patterns, Implementation Issues, Open source development.			5 hrs	
Unit –III					
7	Software Testing: Development Testing, Test Driven Development, Release Testing, User Testing.			4 hrs	
8	Configuration management: Change management, Version management, System building, Release management.			4 hrs	

Text Books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

Reference Books:

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw,2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
Ш	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	

BACK

Program: Bachelor of Engineering				
Cou	Course Title: Big Data Analytics Course Code: 22ECAC			
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3 hrs/week		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 40		Exam Duration: 3 hrs	
		Unit –I		
1	Introduction: Data Ar	nalytics, Data Analytics Li	fe Cycle, Big Data	4 hrs
_	Characteristics, Differen	t Types of Data.		41113
2	Big Data Technologies	Big Data Technologies: Parallel Data Processing, Distributed Data		
	Processing, Hadoop, Sp	ark		8 hrs
3	Nosql: NoSQL Databases, Document databases, Key-value databases,			4 hrs
	Wide-column stores, Graph databases			
Unit –II				
	Big Data Modeling: Data Model Structures, Data Model Operations,			
4	Processing Workloads, Processing in Batch Mode, Processing in Real-time			8 hrs
	Mode.			
5	MongoDB – Introduction	on to MongoDB, RDBMS a	and MongoDB, Data	8 hrs
	Types in MongoDB, MongoDB Query Language.			01113
Unit –III				
6	Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive		4 hrs	
	File Format, Hive Query Language (HQL).			71113
7	Big data applications a	nd case study: Stock mark	et analysis, weather	4 hrs
	data analysis			71113

Text Books:

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniques, Prentice Hall, 2015.
- 2. Seema Acharya, Subhashini Chellappan, Big Data & Analytics, Wiley India Pvt Ltd 2014

Reference Books:

- 1. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set	Chapter	Instructions
	of 20 Marks Each	Numbers	
ı	Q.No1, Q.No2,	1, 2, 3	Solve Any 2 out of 3
	Q.No3		
II	Q.No4, Q.No5,	4, 5	Solve Any 2 out of 3
	Q.No6		
III	Q.No7	6	Solve Any 1 out of 2
111	Q.No8	7	Solve Ally I out of 2

BACK