

Curriculum Structure and Curriculum Content for the Academic year 2023-27

Department: Electrical & Electronics Engineering

Program: UG

Table of Contents

Vision and Mission of KLE Technological University	3
Vision and Mission Statements of the School / Department	4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives	5
Curriculum Structure-Overall	7
Curriculum Structure-Semester wise	9
Semester - I	9
Semester - II	10
Semester- III	11
Semester- IV	12
Semester- V	13
Semester- VI	14
Semester- VII	15
Semester- VIII	16
List of Program Electives	17
Curriculum Content- Course wise	19

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education—recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavors.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Back

Vision and Mission Statements of the School / Department

Vision

KLE Tech Electrical & Electronics Engineering school will be well recognized nationally and internationally for excellence in its educational programs, innovative research and impact on the industry and society.

Mission

- To provide a high quality educational experience through innovative curricula, outstanding teaching, and research training that enable the students to become leaders in their chosen field.
- To contribute to advancement of knowledge in both fundamental and applied areas of Electrical and Electronics Engineering and allied fields.
- Provide scholarly and vibrant learning environment that enable staff and students achieve personal and professional growth.
- To collaborate within and beyond the discipline to create solutions that benefit humanity and society.

Back

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

- 1. Graduates will demonstrate peer-recognized technical competency to conceive, analyze, design and implement solutions to problems in Electrical and Electronics Engineering field.
- 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- **3.** Graduates will continue to develop professionally through life-long learning, advanced education, and other creative pursuits in science and technology.
- **4.** Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

- **1. Engineering Knowledge:** Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- **2. Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- **3. Design/Development of Solutions**: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. WK 5
- **4. Conduct Investigations of Complex Problems:** Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. WK 8
- **5. Engineering Tool Usage:** Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK 2 and WK 6)
- **6. The Engineer and The World:** Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK 1, WK 5 and WK 7)
- **7. Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. WK 9
- **8. Individual and Collaborative Team work:** Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- **9. Communication:** Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective

reports and design documentation, make effective presentations considering cultural, language, and learning differences.

- **10. Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- **11. Life-Long Learning:** Recognize the need for, and have the preparation and ability for Independent and life-long learning Adaptability to new and emerging technologies and Critical thinking in the broadest context of technological change. (WK 8)

Program Specific Objectives -PSO's

PSO1: Demonstrate the ability to analyze, design, and optimize Power System, electrical drives and power converter systems for applications in industrial automation, renewable integration, and electric mobility, ensuring efficiency, reliability, and sustainability.

PSO2: Demonstrate the ability to analyze, design, and optimize Power System, electrical drives and power converter systems for applications in industrial automation, renewable integration, and electric mobility, ensuring efficiency, reliability, and sustainability.

<u>Back</u>

KLE Tech Confidential

Curriculum Structure-Overall

2023-27

					Semester				
	1	II	III	IV	V	VI	VII		VIII
	Single variable calculus 18EMAB101 (4-1-0)	Multivariable Calculus 18EMAB102 (4-1- 0)	Integral Transforms and Statistics 15EMAB203 (4-0-0)	Linear Algebra and Partial differential equations 15EMAB208 (4-0-0)	Arithmetical Thinking & Analytical Reasoning 23EHSA303 (Audit)	Professional Aptitude and Logical Reasoning. 16EHSC301 (3-0-0)	Constitution of India, Professional Ethics and Environmental Studies 15EHSA401 (Audit)	Program Elective 6 (25EEEEXXX) (3-0-0)	Industry Internship Training (0-0-6) Industry Internship Project (0-0-11)
	Engineering Chemistry 22ECHB102 (3-0-0)	Engineering Physics 22EPHB101 (3-0-0)	Corporate Communication 22EHSH201 (0-0-0)	Problem Solving & Analysis 24EHSA202 (0-0-0)	Power System Analysis & Stability 17EEEC302 (3-0-0)	Industry Readiness & Leadership Skills 22EHSH302 (Audit)	Power System Protection 26EEEC401 (1-0-1)	Open Elective (25EEEOXXX) (3-0-0)	
Semester wise	C Prog for problem solving 18ECSP101 (0-0-3)	Engg Exploration 22ECRP101 (0-0-3)	Circuit Analysis 19EEC201 (4-0-0)	ARM Processor & Applications 23EEEC202 (3-0-0)	OS & Embedded Systems 25EEEC302 (3-0-1)	Automotive Electronics 23EEEC303 (2-0-1)	Program Elective 3 (25EEEEXXX) (3-0-0)	Capstone Project 21EEEW402 (0-0-11)	
Courses	Engg Mechanics 15ECVF101 (4-0-0)	Basic Electronics 18EECF101 (4-0-0)	Analog Electronic Circuits 23EEEC201 (4-0-0)	Linear Control Systems 17EEC204 (3-0-0)	Electric Drives & Control 25EEEC301 (2-0-1)	CMOS VLSI Circuits 23EEEC304 (3-0-0)	Program Elective 4 (25EEEEXXX) (3-0-0)		
	Basic Electrical Engg 18EEEF101 (3-0-0)	Basic Mechanical Engg 22EMEF101 (2-1-0)	Electrical Power Generation, Transmission & Distribution 24EEEC201 (3-0-0)	Electrical Machines 19EEC204 (4-0-0)	Linear Integrated Circuits 18EEC301 (3-0-0)	CMOS VLSI Lab 23EEEP304 (0-0-1)	Program Elective 5 (25EEEEXXX) (3-0-0)		
	Professional communication 15EHSH101 (1-1-0)	Applied physics lab 21EPHP101 (0-0-1)	Digital Circuits 19EEC203 (4-0-0)	Signals & Systems 19EEEC205 (3-0-0)	Machine Learning & Deep Learning 24EEEC302 (2-0-2)	Program Elective 1 (25EEEEXXX) (3-0-0)	Senior Design Project 21EEEW401 (0-0-6)		

ISO 21001:2018

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise

FORM

Year:2023-27

	Design Thinking for Social innovation 20EHSP101 (0-1-1)	Problem Solving with Data Structures 18ECSP102 (0-0-3)	Analog Electronics Laboratory 23EEEP201 (0-0-1)	Power Electronics 20EEEC201 (3-0-0)	Digital Signal Processing 20EEEC301 (3-0-0)	Program Elective 2 (25EEEEXXX) (3-0-0)		
			Digital Circuits Laboratory 15EEEP203 (0-0-1)	ARM Microcontroller Lab 23EEEP202 (0-0-1)	Machines Lab 19EEEP301 (0-0-1)	Power System Modelling Operation & Control 25EEEC303 (2-0-1)		
			Microcontroller Architecture & Programming 23EEEF201 (2-0-1) C Programming 18EEEF201 (0-0-2)(Dip)	Digital System Design using Verilog 18EEEP203 (0-0-2)	Data acquisition and controls Lab 23EEEP302 (0-0-1)	Minor Project 24EEEW301 (0-0-6)		
				Data Structure Applications Lab 23EEF202 (0-0-2) Data Structure Using C Lab 23EEF203 (0-0-3) (Lateral Entry Students)	Mini project 23EEEW301 (0-0-3)			
Credits	22	22	24	25	25	25	17	17

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculu	ım structure semester wise		Year:2023-27

Curriculum Structure-Semester wise

Semester - I

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hours
3	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hours
4	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hours
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hours
6	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	3 hours
7	20EHSP101	Design Thinking for Social Innovation	HSS	0-1-1	2	4	80	20	100	3 hours
			Total	13-2-7	22	29				

<u>Back</u>

Title: Curricul	um structure semester wise		Year:2023-27
KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0

Semester - II

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hours
2	22EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hours
3	22ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hours
4	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hours
5	22EMEF101	Basic Mechanical Engineering	ES	2-1-0	3	4	50	50	100	3 hours
6	21EPHP101	Applied Physics Lab (ES)	BS	0-0-1	1	2	80	20	100	3 hours
7	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hours
			Total	15-3-4	22	31				

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curricul	um structure semester wise		Year:2023-27

Semester- III

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	15EMAB203 15EMAB232	Integral Transforms and Statistics Calculus and Integral Transforms (Lateral Entry Students)	ES	4-0-0	4	4	50	50	100	3 hours
2	24EHSA201	Corporate Communication	ES	0	0	2	100		100	3 hours
3	19EEEC201	<u>Circuit Analysis</u>	PC	4-0-0	4	4	50	50	100	3 hours
4	23EEEC201	Analog Electronics Circuits	PC	4-0-0	4	4	50	50	100	3 hours
5	24EEEC201	Electrical Power Generation, Transmission & Distribution	PC	3-0-0	3	3	50	50	100	3 hours
6	19EEEC203	<u>Digital Circuits</u>	PC	4-0-0	4	4	50	50	100	3 hours
7	23EEEP201	Analog Electronics Laboratory	PC	0-0-1	1	2	80	20	100	2 hours
8	15EEEP203	Digital Circuits Laboratory	PC	0-0-1	1	2	80	20	100	2 hours
9	24EEEF201	Microcontroller Architecture & Programming	ES	2-0-1	3	4	50	50	100	2 hours
	18EEEF201	<u>C Programming</u> (Dip)	ES	0-0-2	2	4	80	20	100	2 hours
			TOTAL	21-0-3	24	29				

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculu	um structure semester wise		Year:2023-27

Semester- IV

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	15EMAB208 15EMAB242	Linear Algebra and Partial differential equations Vector Calculus and Integral Transforms (Lateral Entry Students)	BS	4-0-0	4	4	50	50	100	3 hours
2	24EHSA202	Problem Solving & Analysis	ES	0-0-0	0	2	100		100	3 hours
3	23EEEC202	ARM Processor & Applications	PC	3-0-0	3	3	50	50	100	3 hours
4	17EEEC204	<u>Linear Control Systems</u>	PC	3-0-0	3	3	50	50	100	3 hours
5	19EEEC204	Electrical Machines	PC	4-0-0	4	4	50	50	100	3 hours
6	19EEEC205	Signals & Systems	PC	3-0-0	3	3	50	50	100	3 hours
7	20EEEC201	Power Electronics	PC	3-0-0	3	3	50	50	100	3 hours
8	23EEEP202	ARM Microcontroller Lab	PC	0-0-1	1	2	80	20	100	2 hours
9	18EEEP203	<u>Digital System Design using</u> <u>Verilog</u>	PC	0-0-2	2	4	80	20	100	2 hours
	23EEF202	Data Structure Applications Lab		0-0-2	2	4	80	20	100	2 hours
10	23EEEF203	<u>Data Structure Using C Lab</u> (Lateral Entry Students)	ES	0-0-3	3	6	80	20	100	2 hours
			TOTAL	20-0-5	25	32				

<u>Back</u>

Q
KLE TECH.

FORM

ISO 21001:2018

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise

Year:2023-27

Semester- V

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	23EHSA303	Arithmetical Thinking & Analytical Reasoning	ES	0-0-0	Audit	2	100		100	3 hours
2	17EEEC302	Power System Analysis & Stability	PC	3-0-0	3	3	50	50	100	3 hours
3	18EEEC301	Linear Integrated Circuits	PC	3-0-0	3	3	50	50	100	3 hours
4	25EEEC301	Electric Drives & Control	PC	2-0-1	3	4	67	33	100	2 hours
5	24EEEC302	Machine Learning & Deep learning	PC	2-0-2	4	6	50	50	100	2 hours
6	25EEEC302	OS & Embedded Systems	PC	3-0-1	4	5	63	37	100	3 hours
7	20EEEC301	Digital Signal Processing	PC	3-0-0	3	3	50	50	100	3 hours
8	19EEEP301	Machines Lab	PC	0-0-1	1	2	80	20	100	2 hours
9	23EEEP302	<u>Data acquisition and controls</u> <u>Lab</u>	PC	0-0-1	1	2	80	20	100	2 hours
10	15EMAB302	<u>Linear algebra and statistics</u> (Lateral Entry Students)	ES	3-0-0	3	3	50	50	100	3 hours
11	23EEEW301	Mini project	PW	0-0-3	3	6	50	50	100	2 hours
	TOTAL 16-0-9 25 36									

<u>Back</u>

Title: Curriculu	ISO 21001:2018 um structure semester wise		Year:2023-27
Q^{\bullet}	FORM	Document #: FMCD2005	Rev: 1.0

Semester- VI

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	16EHSC301	Professional Aptitude and Logical reasoning	НС	3-0-0	3	3	50	50	100	3 hours
2	23EHSA304	Industry Readiness & Leadership Skills	ES	0-0-0	Audit	2	100		100	
3	23EEEC304	CMOS VLSI Circuits	PC	3-0-0	3	3	50	50	100	3 hours
4	24EEEC304	Automotive Electronics	PC	2-0-1	3	6	67	33	100	2 hours
5	25EEEC303	Power System Modelling Operation & Control	PC	2-0-1	3	4	67	33	100	2 hours
6	25EEEEXXX	Program Elective 1	PC	3-0-0	3	3	50	50	100	3 hours
7	25EEEEXXX	Program Elective 2	PC	3-0-0	3	3	50	50	100	3 hours
8	23EEEP304	CMOS VLSI Circuits Lab	PC	0-0-1	1	2	80	20	100	2 hours
9	24EEEW301	Minor Project	PW	0-0-6	6	12	50	50	100	2 hours
			TOTAL	16-0-9	25	38				

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculu	Year:2023-27		

Semester- VII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	26EEEC401	Power System Protection	PC	1-0-1	2	3	50	50	100	2 hours
2	25EEEEXXX	Program Elective 3	PSE	3-0-0	3	3	50	50	100	3 hours
3	25EEEEXXX	Program Elective 4	PSE	3-0-0	3	3	50	50	100	3 hours
4	25EEEEXXX	Program Elective 5	PSE	3-0-0	3	3	50	50	100	3 hours
5	15EHSC402	Constitution of India, Professional Ethics and Environmental Studies	HSC	0-0-0	Audit	2	50	50	100	3 hours
7	21EEEW401	Senior Design Project	PC	0-0-6	6	12	50	50	100	3 hours
			TOTAL	10-0-7	17	26				

<u>Back</u>

ISO 21001:2018

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise

FORM

Year:2023-27

Semester- VIII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration (in Hours)
1	25EEEEXXX	Program Elective 6	PC	3-0-0	3	3	50	50	100	3 hours
2	25EEEOXXX	Open Elective	PSE	3-0-0	3	3	50	50	100	3 hours
3	21EEEW402	Capstone Project	PSE	0-0-11	11	22	50	50	100	3 hours
			TOTAL	6-0-11	17	28				

Back

Semester	I	II	III	IV	V	VI	VII	VIII	Total
Credits	22	22	24	25	25	25	17	17	177

List of Program Electives

Sr. No	Name of the Course	Course Code							
	VI Semester								
1.	Electric Vehicular Technology	24EEEE301							
2.	Modelling & Analysis of Hybrid Electrical Energy Systems	24EEEE302							
3.	Architectural Design of Integrated Circuits	24EEEE303							
4.	Object Oriented Programming using C++	24EEEE305							
5.	Generative AI	25EEEC306							
	VII Semester								
6.	Flexible AC Transmission System (FACTS)	19EEEE401							
7.	<u>Traction Systems for Electric Vehicles</u>	20EEEE401							
8.	Smart Grid Technologies	25EEEE401							
9.	Powertrain Control System Design	25EEEE402							
10.	Battery Management Systems	25EEEE403							
11.	AUTOSAR	25EEEE404							
12.	Advanced IC Packaging	25EEEE405							
13.	System Verilog using Verification	25EEEE406							
14.	CMOS ASIC Design	25EEEE407							
15.	Human Machine Interface	25EEEE408							
16.	Nonlinear Control Systems	25EEEE409							

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	Year:2023-27	

17.	Modern Control Systems	25EEEE410
18.	<u>Digital Control Systems</u>	25EEEE411
19.	Electricity & Safety Measures	25EEEE412
20.	Switched Mode Power Converters	25EEEE413
21.	Design for Testability	25EEEE414
22.	System on Chip Design	25EEEE415

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	Year:2023-27	

Curriculum Content- Course wise

I Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Semester: I			
Course Title: Single Variable C	Calculus	Course Code: 18EN	IAB101		
L-T-P: 4-1-0	Credits: 05	Contact Hours: 6 H	rs/Week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 50	Examination Duration: 3Hrs				
	Unit I				
Chapter No. 1 Functions, Graphs and Models					
Functions, types of functions, transformations and models (Linear, exponential,					
trigonometric).			07 Hrs		
MATLAB: Graphing functions, [g the models	07 1113		
Chapter No. 2 Calculus of func					
Limit of a function, Infinite		• •			
Intermediate value theorem s	-	tion using Bisection			
Method and Newton- Raphson			13 Hrs		
Interpretation of derivative as		,			
only), Maxima, Minima and o	•	ture and Radius of			
Curvature, Indeterminate form					
MATLAB: Optimization probler	<u> </u>				
Charatau Na 2 Indinita Cariaa	Unit II				
Chapter No. 3 Infinite Series	wice Toots of annuarrance	Altowaating			
Definition, Convergence of se					
series. Power series, radius of Applications of Taylor's and Ma		iviaciauriii s series,	06 Hrs		
MATLAB: Convergence of serie					
Chapter No. 4 Integral calculus					
Tracing of standard curves in		rm and Polar form			
Beta and gamma function, rela		•			
Beta and gamma functions; A					
Surface area (Cartesian, param		·	14 Hrs		
Trapezoidal rule, Simpson's 1/3					
MATLAB: problems on arc leng		rea			
	Unit III				
Chapter No. 5 Ordinary differe	ential equations of first order				
(a) Introduction to Initial Value	problems. Linear and Bernoul	li's equations, Exact	10 Hrs		
equations and reducible to exact form, Numerical solution to Initial Value					
problems-Euler's method, Mod	dified Euler's method and Rung	ge-Kutta method			

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

(b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies. MATLAB: Solve differential equations		
Text Books		
1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010.		
Reference Books:		
1.Calculus Single and Multivariable, Hughes-Hallett Gleason, Wiley India Ed, 4ed,		
2009.		
2.Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010		

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

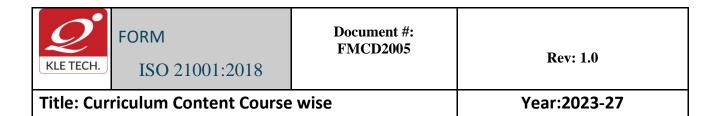
Program: UG Semester: I			
Course Title: Engineering Physi	Course Title: Engineering Physics		
L-T-P: 3-0-0	T-P: 3-0-0 Credits: 03 Contact Hrs: 3 Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Examination Duration: 3 Hrs		
	Unit I		
Chapter No. 1 CONDUCTION IN	SOLIDS		
Conduction in metals: Review of classical free electron theory: drift velocity, electrical conductivity, mobility and temperature effect on conductivity, resistivity, failure. Quantum free electron theory, bands theory of solids, classification of materials based on energy bands and bonding force between atoms. Fermi energy, Fermi-level, Fermi-factor, density of states (qualitative). Semiconductors: Introduction, technological importance and applications. Intrinsic semiconductors: Energy bands structure in semiconductors, Fermi-level, Fermi-factor, density of states, carrier concentration in intrinsic semiconductors. Electron motion and hole transfer, drift current, diffusion current, mobility and conductivity. Extrinsic Semiconductors: n-type and p-type semiconductors: structure, band diagram with Fermi-level, conductivity, charge neutrality condition, law of mass action, majority and minority charge carriers, effects of heat and light, Hall effect, numerical.			11 Hrs
Chapter No. 2 PN-JUNCTION			05 Hrs
The PN-Junctions: Junction of p-type and n-type, barrier voltage, depletion region, qualitative theory of p-n Junction. Biased junctions: Reverse biased junction, forward biased junction, junction temperature effects. Junction currents and voltages: Shockley equation, junction currents, junction voltages. PN-junction diode characteristics and parameters: Forward and reverse characteristics (Ge and Si), diode parameters. Temperature Effects: Diode power dissipation, forward voltage drop, dynamic resistance. Diode specifications: Diode data sheets. Diode testing: use of ohmmeter and digital multimeter. Zener diodes: Junction break down mechanism, circuit symbols, characteristics and parameters, numerical.			

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Unit II		
Chapter No. 3 ELECTROSTATICS		
Review of vectors: Co-ordinate systems, vector and scalar quantities, properties of vectors,		
components of a vector and unit vectors.		
Vector operations: gradient, divergence and curl. Vector integrals, Gradient, Green's and Stokes theorem.		
Electric Fields: Properties of electric charges, charging objects by induction, Coulomb's law, Analysis Model: Particle in an electric field, electric field of a continuous charge distribution, electric field lines motion of a charged particle in a uniform electric field, Gauss's Law: Electric flux, Gauss's law, application of Gauss's law to various charge distributions. Dielectrics and Capacitors: Dielectric materials, dielectric constant, electric dipole in an electric field, polarization, polarization types, frequency dependence of polarisibilty. Capacitors, types of capacitors, capacitors with dielectrics, numericals.		
Unit III		
Chapter No. 4 ELECTROMAGNETICS:		
Analysis Model: Particle in a magnetic field, motion of a charged particle in a uniform		
magnetic field, applications involving charged particles moving in a magnetic field,		
magnetic force acting on a current-carrying conductor, torque on a current loop in a	08 Hrs	
uniform magnetic field.	00 1113	
Sources of the Magnetic Field: T he Biot–Savart's law, magnetic force between two parallel		
conductors, Ampere's law, Faraday's law: Faraday's law of induction, motional emf, Lenz's law, Numerical.		

Text Books:

- 1. David. A. Bell, "Electronics Devices and Circuits", 5th Edition, Oxford University Press.
- 2. Electronic Devices and Circuits, 11th Edition by Boylsted, Pearson Publications
- 3. Serway and Jewett, "Physics for Scientists and Engineers with Modern Physics", 9th Edition, CENGAGE learning, 2014.
- 1. eBook: Physics for Scientists and Engineers, A strategic Approach, 3rd edition, by Randal D. Knight.
- 2. Solid state devices and technology- by V. Suresh Babu, sanguine technical publisher.
- 3. S. O. Pillai, Solid state physics, 6th Edition, New age International, 2006.
- 4. A text book of Engineering Physics by M. N. Avadhanulu; P.G. Kshirasagar, S. Chand Co. 2010.


Reference Books:

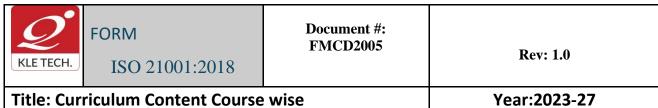
- 1. Jacob Millman and Christos Halkias, "Electronic Devices and Circuits" TMH edition, 1995.
- 2. R. P. Feynman, Robert. B. Leighton, Matthew Sands, The Feynman Lectures on Physics, Vol-II, Norosa Publishing House, 1998.
- 3. David. J. Griffith, 'Introduction to Electrodynamics' 3rd edition, Pearson prentice Hall, 1999.
- 4. Ben. G. Streetman, Solid State Electronic Devices, Prentice Hall, 1995.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vaar-2022 27	

Program: UG		Semester: I	Semester: I	
Course Title: Basic Electronics		Course Code: 18EECF10	Course Code: 18EECF101	
L-T-P: 4-0-0 Credits: 4 Contact Hours: 4 Hrs/weel		eek		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50 Hrs	Examination Duration: 3	Hrs		
	Unit I			
Chapter No. 1: Trend	s in Electronic Industries:	Introduction, Roadmap of		
electronic sector, scope	e and opportunities in vario	us segments of electronics		
(i.e., Consumer, Teleco	m, IT, Defence, Industrial, I	Medical and Automobiles),	03 Hrs	
Government and priva	ate sectors, Growth profile	e of Electronic industries,		
Standards and Policies,	Electronic System Componer	its.		
Chapter No. 2: Basic Co	mponents, Devices and Appl	ications: Diode: PN junction		
characteristics; modelling	ng as a circuit element, idea	and practical diode. AC to		
DC converter: Half wave	and full wave rectifier (centr	e tap and bridge), capacitor	10 Hrs	
filter and its analysis,	numerical examples. Zener	diode and its applications	10 112	
(Voltage reference and	voltage regulator). Realization	on of simple logic gates like		
AND and OR gates.				
Chapter No. 3: Transist	Chapter No. 3: Transistor: BJT, transistor voltages and currents, Signal amplifier			
(Fixed bias, Collector ba	ase bias, Voltage divider bias,	CE configuration). DC load		
line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic			07 Hrs	
(DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two				
Stage RC-coupled Amplifier).				
Unit II				
Chapter No. 4: Digital Logic: Number systems: Decimal, Binary, Octal and				
Hexadecimal number s	systems, Conversions, Binar	y Operations-Addition and		
-	umber systems. Logic gates:			
	ates (AND, OR, NOT), Realiz	_	14 Hrs	
, ,	in algebra: Theorems and		141113	
Theorems , simplificat	tion of logical expressions,	Karnaugh Maps, Use of		
Karnaugh Maps to Minimize Boolean Expressions (2 Variables, 3 Variables and 4				
Variables), Design of Half Adder and Full Adder, Parallel Adder using full adders.				
Chapter No. 5: Operational Amplifier: OPAMP characteristics (ideal and				
practical), Linear and non-linear applications: Inverting amplifier, Non inverting			06 Hrs	
amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD			001113	
and Comparator.				
Unit III				
•	nication Systems: Basic block			
system, types of modulation. Amplitude modulation: Time-Domain description,			07 Hrs	
Frequency-Domain description. Generation of AM wave: square law modulator.			07 1113	
Detection of AM waves: envelope detector. Double side band suppressed carrier				

modulation (DSBSC), Generation of DSBSC wave : balanced modulator, Super		
heterodyne principle.		
Chapter No. 7: Linear Power Supply, UPS & CRO: Working principle of linear		
power supply, UPS and CRO. Measurement of amplitude, frequency and phase		
of a given signal.		


Text Books:

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- **2.** K.A. Krishnamurthy and M. R. Raghuveer, Electrical, Electronics and Computer Engineering for Scientists and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

Reference Books:

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design , 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. Boylstead, Nashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. Ramakant Gaikwad , Operational Amplifiers & Applications, PHI, 2000

<u>Back</u>

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: I	
Course Title: Basic Mechanical Engineering Course Code: 22EMEF		101	
L-T-P: 2-1-0	Credits: 3 Contact Hrs: 4 Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Examination Duration: 3 Hrs		
	Unit I		
Mechanical Engineering, Mec	Chapter No. 1 Introduction to Mechanical Engineering: Mechanical Engineering, Mechanical Engineers' top ten achievements, Branches of		
	nanical product Example: Pressu	ire Cooker.	
Chapter No. 2 Power Transmission Drives: Overview Design Application: Belt Drives (Flat belt), Length of Belt, Velocity Ratio, Initial Tension. Ratio of Tensions. Power Transmitted, Numerical Problems. Gears. Spur Gear, Rack and Pinion, Worm Gear, Bevel Gear, Helical Gears and Elliptical gear. Speed, Torque, and Power in Gear pair. Simple and Compound Gear trains. Numerical Problems. Hydraulic transmission system.			06 Hrs
	Unit II		
Chapter No. 3 Manufacturing Engineering: What is manufacturing? Classification of Manufacturing Processes, Metal joining processes- Soldering, brazing, and welding (Arc and gas welding). Machine tools-Lathe, Milling, Drilling Grinding (working principle and operations). CNC machines, Robotics and its applications. Additive manufacturing techniques.			06 Hrs
Chapter No. 4 IC engines and Electric powertrains: Internal Combustion Engines: Classification, IC engine parts, 4 Stroke SI and CI Engine, Comparison of 2stroke and 4 stroke engine, comparison of CI and SI engine, Problems on Engine Performance. Electric drives. Hybrid drives- series and parallel layout.			04 Hrs
	Unit III		
Chapter No. 5 Refrigeration and Air conditioning: Refrigeration system, vapour compression refrigeration system, vapour absorption system, refrigerants and their properties. Air conditioning system. Solar passive gains: Direct gain, Indirect gain, Isolated gain. Solar passive cooling methods: Direct evaporative cooling, Indirect cooling systems.			03 Hrs
Chapter No. 6 Fluid movers: Pumps, Blowers and Compressors and their working principle			03Hrs
Tutorial Content			
Virtual Prototyping: 2D sketching, 3D modelling-Extrude, Revolve, Pattern and Sheet Metal Assembly.			08 Hrs
Visit to workshop: well	ding shop, sheet metal shop, ma	achine Shop.	08 Hrs

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

- Demonstration of various machine tools such as lathe, milling, drilling and grinding machines and safety precautions in workshop.
- Assembly and disassembly of bicycle and demonstration on welding (electric arc welding, gas welding).

Demonstration and exercise on sheet metal work.

Text Books:

- 5. Jonathan Wickert and Kemper Lewis, An Introduction to Mechanical Engineering, Third Edition, Cengage Learning, 2013
- 6. K.R. Gopalkrishna, Sudhir Gopalkrishna, S.C. Sharma, A Text Book of Elements of Mechanical Engineering, 30th Edition, Subhash Publishers, Bangalore, 2010
- 7. Dr. N. Krishnamurthy, Dr. H. S. Manohar, Mr. Sagar M. Baligidad, Elements of Mechanical Engineering, First Edition, Sunstar Publisher, 2014

Reference Books:

SKH Chowdhary, AKH Chowdhary, Nirjhar Roy, The Elements of Workshop Technology, Vol I & II, 11th edition, Media Promoters and Publishers, 2001
 Roger Timings, Basic Manufacturing, Third edition, Newnes, An imprint of Elsevier, 2010

Back

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vear-2023-27

Program: UG		Semester: I	
Course Title: C Programming fo	r Problem solving	Course Code: 18ECSP101	
L-T-P: 0-0-3	Credits: 3	Contact: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching: 78 Hrs.	Exam Duration: 3 Hrs.		
	Unit I		
Chapter No. 1 Introduction to Problem solving Introduction to algorithms / flowcharts and its notations, top down design, elementary problems.			03 Hrs
Chapter No. 2 Basics of C progr Characteristics and uses of C, Variables, Constants, Operators	Structure of C program, C To , Data-types, Input and Outpu	•	15 Hrs
Chapter No. 3 Decision control statements Conditional branching statements: if statement, if else statement, else if ladder, switch statement, unconditional branching statements: break, continue. Introduction to Debugging Skills, Introduction to Test Driven Programming.		12 Hrs	
Chapter No. 4 Iterative statements while, do-while, for, nested statements			10 Hrs
Chapter No. 5 Functions Introduction, Function declaration, definition, call, returns statement, passing parameters to functions, introduction to macros. Introduction to Coding Standards			10 Hrs
Chapter No. 6 Arrays and Strings Introduction, Declaration, Accessing elements, Storing values in arrays, Operations on one dimensional array, Operations on two dimensional arrays, Introduction to Code Optimization and refactoring		15 Hrs	
Chapter No.7 Pointers Introduction, declaring pointer, pointer variables, pointer expression and arithmetic, passing arguments to functions using pointers, pointers and arrays, passing an array to a function.			08 Hrs
Chapter No. 8 Structures and U Introduction, passing structures		res, Unions	05 Hrs

Text Books:

- 1. R.G.Dromey, How to Solve it by Computer, 1ed, PHI, 2008.
- 2. Yashvant Kanetkar, Let us C ,15th ed, BPS Publication, 2016.

Reference Books:

- 1. B. W. Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B. S. Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

<u>Back</u>

$[\mathcal{Q}^{oldsymbol{\cdot}}]$	FORM
KLE TECH.	ISO 21001:2018

Document #: FMCD2005

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: I	
Course Title: Engineering	Course Title: Engineering Exploration Course Code: 22ECRP101		
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 72	Examination Duration: 3 H	rs	
	Unit I		
Module 1: Introduction to Engineering and Engineering Study Introduction to Engineering and Engineering Study: Difference between science and engineering, scientist and engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, Expectation for the 21 st -century engineer, and Graduate Attributes.			03 Hrs
generation- Function tree,	sign ess, Problem definition for Functional structure, Morph duct Architecture. Prototypin	nological chart, and Concept	09 Hrs
Module 3: Mechanisms and Resource Specifications (MRS) Mechanism, types of mechanisms, degree of freedom, linkages, four-bar linkage mechanism, actuators & their types, torque, governing equations, FOS, motor sizing, motor selection, mass acquisition using software, power adapters, types of adapters, power calculations & adapter selection.			09 Hrs
Module 4: Platform-Based development Introduction to various platform-based development (Arduino) programming and its essentials, Introduction to sensors, transducers, and actuators and its interfacing with Arduino.			15 Hrs
Module 5. Project Management Introduction to Project Management, Significance of teamwork, Significance of Agile practices, Significance of documentation.			03 Hrs
Module 6. Engineering Ethics Identifying Engineering as a Profession, Significance of Professional Ethics, Code of Conduct for Engineers, Identifying Ethical Dilemmas in different tasks of engineering, Applying Moral Theories and codes of conduct for resolution of Ethical Dilemmas.			03 Hrs
Module 7. Sustainability in Engineering Introduction to sustainability, Sustainability leadership, Life cycle assessment, carbon foot print.			06 Hrs
Course Project Reviews			24 Hrs

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Semester: I
Course Title: Applied Physics lab (ES)		Course Code: 21EPHP101
L-T-P: 0-0-1 Credits: 01		Contact Hrs: 2 Hrs/week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Teaching Hrs: 20	Examination Duration: 03 Hrs	

LIST OF EXPERIMENTS

- 1. Experimental data error analysis.
- 2. Centripetal force.
- 3. Young's modulus.
- 4. Coefficient of friction.
- 5. V-I Characteristics of pn- Junction diode and plotting DC load line.
- 6. Hysteresis loss.
- 7. Verification of Kirchoff's KVL and KCL (DC Circuits)
- 8. Use of measuring instruments (RPS & FG) and calibration of oscilloscope
- 9. Realization of basic gates (Using IC's)
- 10. Zener diode characteristics and voltage regulation (line and load regulation).

OPEN ENDED EXPERIMENT

- 1. Realization of a ±5/12V regulated power supply
- 2. Stepper motor drive

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Semester: II	
Course Title: Multivariable Calculus		Course Code: 18EMAB102	
L-T-P: 4-1-0	Credits: 05	Contact Hours: 6 Hrs / Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours : 50 Hrs	Exam Duration: 3 Hrs.		
	Unit I		
	ation Partial derivatives, Level curve problems. Lagrange's multipliers	· ·	12 Hrs
Change of variables, Jacobian. A	and polar coordinates, Change Application of double integrals s, application of double integrals	the order of integration.	08 Hrs
Unit II			
Chapter No. 3 Triple integrals Triple integrals, Cartesian, change to Cylindrical and Spherical coordinates Application of Triple integrals Chapter No. 4 Calculus of Vector Fields Vector fields, Gradient and directional derivatives. Line and Surface integrals.		07 Hrs	
Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem. MATLAB: application of Triple integrals, Vector calculus problems		13 Hrs	
	Unit III		
Chapter No. 5 Differential equations of higher orders (a) Linear differential equations of second and higher order with constant coefficients, The method of Variation of parameters. Initial and boundary value problems. (b) Applications of second order differential equations-Newton's 2 nd law, electrical circuits, Simple Harmonic motion. Series solution of differential equations. Validity of Series solution of Differential equations. MATLAB: application of differential equations		(5+5) Hrs	

Text Books:

1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010

Reference Books:

- 1. Calculus Single and Multivariable, Hughes-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

II Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Semester : II	
Course Title: Engineering Chemistry Course Code: 22ECH		Course Code: 22ECHB	102
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hrs/week	
ISA Marks: 50	SA Marks: 50 ESA Marks: 50 Total Marks: 100		
Teaching Hrs: 40	Examination Duration: 3 Hrs		
	Unit I		
Chapter No. 1 Chemical Bonding and Molecular Structure Chemical bonding – Types, Ionic bond: Formation of NaCl molecule, factors influencing the formation of ionic bond – ionization energy, electron affinity and lattice energy, Born–Haber's cycle, calculation of lattice energy of NaCl molecule and properties of ionic compounds; Covalent bond: atomic orbital theory – formation of H ₂ molecule, polar and nonpolar covalent bonds – H ₂ and HCl molecules, dipole moment, calculation of percentage of ionic character and		06 Hrs	
properties of covalent compounds. Hybridization: sp, sp ² and sp ³ hybridization - geometry of BeF ₂ , BF ₃ and CH ₄ molecules. VSEPR Theory: regular and irregular geometry, geometry of SnCl ₂ , NH ₃ and H ₂ O molecules. Chapter No. 2 Electrochemical Energy Systems Electrode potential, Nernst equation; Formation of a cell; Reference electrodes: Calomel electrode - determination of electrode potential; Numerical problems on E, Ecell and EOcell. Batteries: classification, characteristics, Lead - acid battery and Lithium ion battery. Fuel cells: Types of fuel cells; Methanol - Oxygen fuel cell.			06 Hrs
Chapter No. 3 Polymer Chemistry Polymers, properties, classification, free radical mechanism of addition polymerization by taking ethylene as an example. Commercial polymers: plexi glass and polyurethane. Polymer composites: carbon fibre and epoxy resin – synthesis, properties and applications. Conducting polymers: Polyaniline – synthesis, mechanism of conduction in doped polyaniline and its applications.		04 Hrs	
	Unit II		
Chapter No. 3 Plating Techniques Technological importance of plating techniques, Types of plating, Electroplating: Definition, electroplating of Gold by acid cyanide bath, determination of Throwing Power of plating bath by Haring Blum cell and numerical problems. Electroless plating: advantages of electroless plating over electroplating, electroless plating of Copper and its application in the manufacture of printed circuit board (PCB).		03 Hrs	
silicon, purification of silic	ology chemical properties of silicor on; chemical vapour deposition owth: preparation of single crysta	(CVD) process, zone	10 Hrs

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

crystal pulling technique and numerical problems. Crystal slicing and wafer preparation; Fabrication process: thermal oxidation, diffusion, ion implantation, numerical problems, epitaxial growth, masking, photolithography; wet etching and	
dry etching.	
Chapter No. 5 Material Chemistry	
Liquid crystals: classification of liquid crystals, applications of liquid crystals in display systems. Glass: properties, smart glass: electrochromic, thermochromic and photochromic smart glass - properties and applications. Thermoelectric and	03 Hrs
Piezoelectric materials - meaning, properties and applications.	
Unit III	
Chapter No. 6 Water Chemistry	
Water: sources, impurities in water, potable water: meaning and specifications (as	
per WHO standards). Hardness: determination of total hardness of water by EDTA	04 Hrs
method and numerical problems. Purification of water: Flash distillation, Reverse	
Osmosis, Electrodialysis - principle, process and applications.	
Chapter No. 7 Instrumental Methods of Measurement	
Advantages over conventional methods. Electro analytical methods:	
	04 Hrs
Colorimeter - Principle, methodology and applications. Spectral methods of	
analysis: UV Spectrophotometer - Instrumentation and applications.	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Text Books:

- 1. A text Book of Engineering Chemistry, 1st edition, Dara. S. S, S. Chand and Co. Ltd., 2009, New Delhi.
- 2. A text Book of Engineering Chemistry, 16th edition, Jain P.C and Jain M, Dhanpat Rai Publications, 2006, New Delhi.
- 3. Engineering Chemistry, 3rd Edition, Krishnamurthy. N., Vallinayaga. P. and Madhavan. D., PHI/E- Books Premium, 2014.

Reference Books:

- 1. Text book of Inorganic Chemistry, P. L. Soni, Sultan Chand, 1999, New Delhi.
- 2. Inorganic chemistry: Principles of structure and reactivity, , 4th Edition, James E. Huheey, Ellen A. Keiter, Richard L. Keiter, Okhil K. Medhi, Dorling Kindersley (India) Pvt. Ltd., 2006, New Delhi.
- **3.** Concise Inorganic Chemistry ELBS, 5th Edition, J.D. Lee, Wiley, 2008, New York.
- **4.** Hand book of batteries, 3rd edition, David Linden, Thomas B Reddy, McGraw Hill publications, 2001, New York.
- **5.** Polymer Science, 6th edition, Gowariker V.R, Viswanatan N.V, Sreedhar J., New Age International (P) ltd., 2007, New Delhi.
- **6.** Text Book of Polymer Science, 3rd edition, Fred W. Billmeyer, John Wiley and Son's, 1984, New York.
- **7.** VLSI Technology, 2nd Edition, S. M. Sze, McGraw-Hill Series in Electrical and Computer Engineering, 1998, New York.
- **8.** Solid State Devices & Technology, 4th Edition, V. Suresh Babu, Sanguine Technical Publishers, 2005, Bangalore.
- **9.** Materials Science and Engineering: An introduction, 9th Edition, Callister William D, John Wiley and Sons, 2007, New York.
- **10.** Instrumental Methods of Chemical Analysis, 5th edition, Gurdeep R Chatwal, Sham K Anand, Himalaya Publishing House, Pvt. Ltd, 2010, Mumbai.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

Program: UG Seme		Semester: II	
Course Title: Problem Solving with Data Structures		Course Code: 18ECSP102	
L-T-P: 0-0-3	2: 0-0-3 Credits: 3 Contact : 6 Hrs		/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 10	0
Teaching: 78 Hrs	Exam Duration: 3 Hrs		
Chapter No. 1 Pointers, Structures and Files			
Recap of basics: Pointers ,Structures; Self-referential structures, dynamic memory management Files – File manipulation programs			12 Hrs
Chapter No. 2 Stacks and I	Recursion		
Stack: Definition, Opera	tions, Stack ADT Implementation of sta	ick operations.	16 Hrs
Applications of stack.			101113
Recursion- Need for Recursion and problems on Recursion.			
Chapter No. 3 Queues			
Queue: Definitions of Linear, Circular queues, Queue ADT Linear and circular queue			16 Hrs
operations Definition and working of Priority queue, Double ended queue; Applications			
of queues.			
Chapter No. 4 Lists			
Concept of lists and dynamic memory management lists, definitions and			18 Hrs
representations: singly, doubly, circular lists. Dynamic Implementation of lists and its			
operations, Applications of linked lists			
Chapter No. 5 Binary trees			
Binary Tree: Definition, Terminology and representation, Tree Traversals both recursive and iterative. Binary Search Tree and its applications.			

Text Books:

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- **3.** Data Structures Through C -- Yashavant P. Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Vaar:2023-27

Program: UG		Semester: II	
Course Title: Engineering Mechanics		Course Code: 15ECVF101	
L-T-P: 4-0-0	Credits:4	Contact Hrs: 4 Hrs/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hours		
	Unit I		
Chapter No. 1: Overview of Civil Engineering Evolution of Civil Engineering Specialization, scope and role. Impact of Civil Engineering on National economy, environment and social & cultural fabric. Challenges and Opportunities for Civil Engineers Civil Engineering Marvels, Future challenges, Higher education and Research. Chapter No. 2: Coplanar concurrent force system: Introduction to Engineering Mechanics: Basic idealizations — Particle, Continuum, Body, Rigid body, Deformable body, Definition of force and its elements; Laws of Mechanics — Parallelogram law of forces,			04 Hrs
Principle of transmissibility, Law of Superposition, Newton's laws of motion. Classification of force systems. Resultant of coplanar concurrent force system: Definitions – Resultant, composition & Resolution of a force, Equilibrium, Equilibrant, Formulae for resultant of forces and resolution of a force. Numerical problems on resultant of forces. Conditions of equilibrium, Action & Reaction, Free body diagram, Lami's theorem. Numerical problems on equilibrium of forces. O5 Hrs			12 Hrs
Chapter No. 3: Coplanar non-concurrent force system: Resultant of a force system: Moment, moment of a force, couple, moment of a couple, Characteristics of couple, Equivalent force-couple system, Numerical problems on moment of forces and couples, on equivalent force-couple system. Varignon's principle of moments, Resultant of coplanar- non-concurrent force systems and numerical problems. Unit II			05 Hrs

KLE Tech Confidential CONTROLLED COPY

35

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Cours	Year:2023-27	

Chapter No. 4: Equilibrium of a force system (Chapter 3 contd..)

Conditions of equilibrium, types of support and loading for a statically determinate beam, Reactions at support connections, Numerical problems on equilibrium of force systems and support reactions for a statically determinate beam.

O5 Hrs

Chapter No. 5: Static Friction

Introduction, types of friction, definition, limiting friction, coefficient of friction, laws of Coulomb friction, angle of friction and angle of repose, cone of friction. Wedge and belt friction theory. Derivation of belt friction formula. Numerical problems on, impending motion on horizontal and inclined planes (including connected bodies); wedge friction; Ladder friction and Belt friction.

19 Hrs

Chapter No. 6: Simple Stress and Strain

Introduction, Properties of Materials, Stress, Strain, Elasticity, Elastic limit, Hooke's law & Young's modulus, Stress — Strain Diagram for structural steel, working stress and Factor of safety. Deformation of a bar due to force acting on it. Law of super position. Stresses in bars of uniform & varying cross sections. Composite sections. Problems connected to above topics.

O6 Hrs

Unit - III

KLE Tech Confidential CONTROLLED COPY

36

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Chapter No. 7: Centroid of Plane Figures

Introduction, Definition, Methods of determining the centroid, axis of reference, axis of symmetry, Locating the centroid of simple plane figures (triangle, semicircle, quarter of a circle and sector of a circle etc,.) using method of integration, Numerical problems on Centroid of simple built up sections.

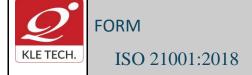
05 Hrs

Chapter No. 8: Second moment of area (Plane figures)

10 Hrs

Introduction, Definition, Method of determining the second moment of area, Section Modulus, Radius of gyration, perpendicular and Parallel axis theorems, Polar second moment of area, second moment of area of simple plane figures (triangle, rectangle, semicircle, circle etc,.) using method of integration, Numerical problems on MI of simple built up sections.

O5 Hrs


Text Books:

- 1.Beer, F.P. and Johnston, R., Mechanics for Engineers: Statics, McGraw Hill Company, New York, 1988.
- 2.Bhavikatti, S.S., and Rajashekarappa K.G., Engineering Mechanics, 3rd ed., New Age International Pub. Pvt. Ltd., New Delhi, 2008.
- 3. Kumar, K.L., Engineering Mechanics, 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 4. Punmia, B.C., Jain, A., Mechanics of Materials, Lakshmi Publications, New Delhi, 2006

Reference Books:

- 1. Jagadeesh, T.R. and Jayaram, Elements of Civil Engineering, Sapna Book House, Bangalore, 2006.
- 2. Ramamrutham, S., Engineering Mechanics, Dhanpat Rai Publishing Co., New Delhi, 1998.
- 3. Singer, F.L., Engineering Mechanics, 3rd edition Harper Collins, 1994.
- 4. Timoshenko, S.P. and Young, D.H., Engineering Mechanics, 4th edition, McGraw Hill Publishing Company, New Delhi, 1956.
- 5. Irving H Shames, Engineering Mechanics, 3rd edition, Prentice-Hall of India Pvt. Ltd, New Delhi-110 001, 1995.

Back

Document #: FMCD2005

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Pro	gram: UG				Semeste	Semester: II	
Course Title: Design Thinking for Social Innova		ovation	Course Code: 20EHSP101				
L-T	-P : 0-1-1		Credits: 2		Contact Hrs.: 2Hrs/week		
ESA	Marks: 80		ISA Marks: 20		Total Marks: 100		
Tea	ching Hours	: 28	Exam Duration: 3 H	rs.			
KNOWLEDGE, TOOLS & DEVELOPMENT	Course sensitization	Inn Av cc (w) Sc Le Er in (C to Ca Ca St In Ac	apstone Project, ampus Placements) ourse Overview udents' Self troduction Activity roup formation	 by Geoff M Design thi Social Inno Written Assign Writing Akshaya class. (Backgrour information Akshaya puthe Social Gaddressing) Brainstorm Session of Innovators 	handout rocess of novation" lulgan nking for vation ments about Patra in add natra and Cuase it is) ing in Social in Class	 Class activity on Behavioural Blocks to Innovation Discussion on the behavioural blocks. Introducing oneself with three Adjectives-Appreciating diversity and discovering self Group Formation Activity (Forming square) (Making four equilateral triangles out of popsicle sticks to enhance group cohesiveness amongst the group mates) 	
	Create Mindse ts	1. Emp (Exam the Pu 2. Opt (Perso down Empty 3. Iter (Thom 4. Crea (Origa 5. Mal	ple of The Boy and appies) imism on Paralyzed waist / Glass Half full, Half o) ation has Alva Edison) ative Confidence my – Josef Albers)	 Reading assign Handout o Mindsets" 		 (How to train the Dragon? Common Video for all the mindsets) Watching in Class TED Talk on "How to build your Creative Confidence by David Kelley – IDEO Founder) 	

Document #:	
FMCD2005	

Rev: 1.0

Year:2023-27 **Title: Curriculum Content Course wise**

	(Confusion is the Welcome doormat at the door of Creativity) 7. Learning from Failure (Designing Website first and then asking the stakeholders about the website) (Spending one lakh for the business which is never launched)		
Process of Social Innova tion	Engage Community study and Issue Identification	Reading assignments Handout on Community Study and Issue Identification Case Study on "E-GramSeva" Case Study on "Janani Agri Serve" Class Presentations Initial observations being made by the group (Literature Survey of Places of Hubli-Dharwad) www.readwhere.co m Detailed interaction / engagements with the society and finalize the social issue for intervention Use template 1: Frame your Design Challenge PEER REVIEW	 Activity on Observation skills To know how to use one's observation skills in understanding the social conditions Experience sharing by senior students Brainstorming Deliberations on the initial observations and arrive at the "Social Issue" Familiarization of the respective templates with the help of sample case study
	2. Inspiration	Reading assignments	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

 Plan for the Research Development of Interview guide Capture your Learnings 	 Handout on Overview of Inspiration Class Presentations Entirety of the 	 Familiarization of the respective templates with the help of sample case study
Learning5	Social Issue	
	 Identification of the Stake Holders (Examples on Fluorescent Curtain and Students' Punctuality for Class) 	
	 Interview Questions (Role Play on Interview with Stakeholders) 	
	 Category wise Learnings capture Use template 2: Plan your Research 	
	Template 3. Development of Interview Guide Template 4. Capture your Learning	
3. Ideation	Reading assignments	• Familiarization of the
3.1 Synthesis	Handout on Overview of	respective templates with
Search for meaning Greats "How might	Overview of Ideation-Synthesis	the help of sample case study
 Create "How might we" question 	Class Presentations	,
·	Create insights"How might we"	
	questions	
	Use template 5: Create Insights	
	Template 6: Create	
	"How Might We'	
	Questions Reading assignments	Due in atoms' :
		Brain storming

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Cour	Year:2023-27	

 3.0 Ideation 3.2 Prototyping Generate Ideas Select Promising Ideas Determine what to prototype Make your prototyp Test and get feedbace 	Tamoulate Q . Determine	 Familiarization of the respective templates with the help of sample case study Activity on Risk management Activity on Resource management Structure building games
	PEER REVIEW	
 4.0 Implementation Create an action plane Community Partners (if any) Budgeting & Fundraising Peer to Peer Crowd Funding Giving Kiosks Donation Envelop Funding Marathons/Walkathons Conducting Yoga Classes (www.causevox.com/www.blog.fundly.com) Duration Ethical concerns Launch your solution Feedback (Impact) 	Reading assignments Handout on Overview of Implementation Class Presentations Pilot implementation plan with required resources and Budget indicating stake holders & their engagement	Familiarization of the respective templates with the help of sample case study
5.0 Reflect Reflection of the overallearning by the students	Uverview of	Familiarization of the respective templates with the help of sample case study

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

	Use template 9: Reflection on the Process Class Presentations Final Presentation- After Implementation	
--	--	--

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

Program: UG		Semester: II		
Course Title: Basic Electric	al Engineering	Course Code: 18EEEF101		
L-T-P: 3-0-0	Credits: 3	s: 3 Contact Hours: 3 Hrs/Week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40 Hrs	Exam Duration: 3 Hrs.			
	Unit I			
Chapter No. 1 Overview of	Electrical Engineering			
	ole, impact of Electrical Enginee	•	02 Hrs	
environment, Sources of	generation, sustainability, challe	nges and opportunities for	02 1113	
electrical engineers, electri	ical engineering marvels, future ch	nallenges.		
Chapter No. 2 DC Circuits				
Voltage and current source	es, Kirchoff's current and voltage la	aws, loop and nodal analysis	05 Hrs	
of simple circuits with do	excitation. Time-domain analys	is of first-order RL and RC	051113	
circuits.				
Chapter No. 3 AC Circuits				
Representation of sinusoic	lal waveforms, peak and rms val	ues, phasor representation,		
real power, reactive power	er, apparent power, power facto	or. Analysis of single-phase	08 Hrs	
·	c circuits. Three-phase balanced o			
relations in star and delta of	connections. power measurement	using two watt meters		
Unit-II				
Chapter No. 4 Electrical Ac	Chapter No. 4 Electrical Actuators			
	, Solenoid, Relays, classification of			
shunt, series, compound,	separately excited, PMDC motor	s – Speed Control, Stepper	09 Hrs	
	ee phase induction motor, Chara	acteristics and applications,		
selection of motors for var				
Chapter No. 5 Power Electr	·			
	me thyristor circuits, Limitations	•		
•	ully controlled AC/DC converter,		06 Hrs	
	e-phase rectifier networks, The t		0015	
	duction motors, Soft-starting in	duction motors, DC to DC		
conversion switched-mode	•			
Unit-III				
•	ring, Safety and protection(Ref :T			
Types of wires and cables for internal wiring, Types of switches and Circuits, Types of				
_ · · ·	and rules in handling electrical ap	•	05 Hrs	
aid for electrical shocks, Importance of grounding and earthing, Methods for earthing,				
	ys, Lockout and Tagout, Electrical	Codes and Standards.		
Chapter No. 7 Batteries:	and the state of t	-1	05 11	
	es, Lithium Ion Battery , Battery		05 Hrs	
efficiency, Numerical of hig	gh and low charging rates, Battery	sizing. Numerical.		

Text Books:	
1. Hughes, Electrical & Electronic Technology, 8th, Pearson Education, 2001	
2.P. C. Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications	
3.Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons, 2004 edition	
4.Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education	
Private Limited, 2009 Edition	
Reference Books:	
1.D. C. Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications	
2.David G. Alciatore and Michel B. Histand, Introduction to Mechatronics and	
Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005	
3. Vincent Del Toro, Electrical Engineering Fundamentals, 2 nd edition, Prentice Hall India	

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	Title: Curriculum Content Course wise		Year:2023-27

Program: UG		Semester: II	
Course Title: Professional Comm	nunication	Code: 15EHSH101	
L-T-P: 1-1-0	Credits: 2	Contact Hrs.: 02Hrs/week	
ESA Marks: 50	ISA Marks: 50	Total Marks: 100	
Teaching Hrs.: 42		Exam Duration: 3 Hrs.	
	Content		
Chapter No. 1. Basics- English Co	ommunication		
Course Introduction, Explanation	of template mix-ups with	correct usages & necessity	09 Hrs
of grammar in error detection, U	Jsage of tenses		
Chapter No. 2. Vocabulary and	grammar		06 Hrs
Vocabulary, Word Formation and	d Active and Passive Voice		001113
Chapter No. 3. Bouncing Practic	ce		
Definition and types of bouncing and its practice with examples, reading skills, free			06 Hrs
style speech. Individual presentation.			
Chapter No. 4. Rephrasing and	Structures		08 Hrs
Comprehension and Rephrasing,	PNQ Paradigm and Struct	ural practice	061113
Chapter No. 5. Dialogues			03 Hrs
Introduction of dialogues, Situat	ional Role plays,		05 1113
Chapter No. 6. Business Commu	inication		09 Hrs
Covering letter, formal letters, Construction of paragraphs on any given general topic.			091113
Reference Books:			
1. Collins Cobuild Advanced Learner's English Dictionary			
2. Raymond Murphy - Intermed	liate English Grammar, Car	mbridge University Press	
3. Martin Hewings- Advanced E	inglish Grammar, Cambridg	ge University Press.	

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

III Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Semester: III	
Course Title: Integral	transforms and Statistics	Course Code: 15EMAE	3203
L-T-P: 4-0-0	Credits: 04	Contact Hours: 4 Hrs/	Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 3 Hrs		
	Unit-I		
Chapter No. 1: Laplac	ce Transforms		
Definition, transforms	s of elementary functions- transfor	ms of derivatives and	
integrals- Properties. functions.	Periodic functions, Unit step functi	ons and Unit impulse	10 Hrs
Inverse Transforms-	properties- Convolution Theorem. I	nitial and Final value	
theorems, examples;	Applications to differential equations	, Circuit equations	
Chapter No. 1: Proba	bility		
•	oility, conditional probability, Baye		10 Hrs
• • • • • • • • • • • • • • • • • • • •	variables- PDF-CDF- Probability Di	stributions: Binomial,	101113
Poisson, Exponential,			
	Unit-II		
Chapter No. 2: Regre			
	od of least squares, fitting of curves	y = a + bx, $y = abx$,	05 Hrs
	sion. Engineering problems		
Chapter No. 3: Fourie			
•	ourier series representations of fo	· .	
_	rier Series representations, Deriva	•	
•	tial Fourier Series and Examples. Co	_	08 Hrs
•	I phase spectra of a periodic signal.	•	
	nearity, Symmetry Properties, Time	•	
<u>~</u> .	tial differentiation coefficients, Time m, Parseval's theorem and Examples		
Chapter No. 4: Fourie		on these properties.	
-	n of non-periodic signals, Magnituc	le and nhase spectra	
Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time			07 Hrs
	Multiplication Theorem, Parseval's t		
on these properties.	, , , , , , , , , , , , , , , , , , , ,		
Unit-III			
Chapter No. 5: Rando	om Process		
(a) Introduction to Joint Probability Distributions, marginal distribution, joint pdf			10 Hrs
and cdf, mean, varian	ce, covariance, correlation.		

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

(b) Introduction to Random process, stationary process, mean, correlation and covariance function, autocorrelation function, cross correlation, Power spectral Density: properties of the spectral density; Gaussian Process: Properties of Gaussian process.

Text Books

- 1. Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.
- 2. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 9ed, Sultan Chand & Sons, New Delhi, 2002
- 3. Walpole and Myers, Probability and Statistics for Engineers and Scientists,8ed, Pearson Education Delhi 2007

Reference Books:

- 1. Simon Haykin, Barry Van Veen, Signals and Systems, John Wiley, 2002.
- 2. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007
- 3. Ian Glover & Peter Grant, Digital Communications, 2nd Ed, Pearson 2012.

Back

	FORM	Documen FMCD20
KLE TECH.	ISO 21001:2018	

nt #: 2005 **Rev: 1.0 Title: Curriculum Content Course wise** Year:2023-27

L-T-P: 4-0-0 ISA Marks: 50 ESA Marks: 50 Exam Duration: 3hrs Unit - I Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differential on on-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties of equation Solution of first order introduction, order and degree of equation Solution of first order first-degree differential equations—variable	Program: UG Semester: III			
L-T-P: 4-0-0 ISA Marks: 50 ESA Marks: 50 Exam Duration: 3hrs Unit - I Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series (with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Course Title: Calculus and Integral Transforms Course Code: 15EMAB2		232	
ISA Marks: 50 Teaching Hrs: 50 Exam Duration: 3hrs Unit - I Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	(Lateral Entry Students)			
Teaching Hrs: 50 Exam Duration: 3hrs Unit - I Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	L-T-P : 4-0-0	Credits: 4	Contact Hrs: 4 Hrs/Wee	ek
Unit - I Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Chapter No. 1 Differential Calculus: Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	Teaching Hrs: 50	Exam Duration: 3hrs		
Differentiation of standard functions of first and higher orders, Taylor's and Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series (with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable				
Maclaurin's series expansion of simple functions for single variable. Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series (with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties of Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	•			
Chapter No. 2 Integral Calculus: Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable		_	•	05 Hr
Evaluation of integrals, properties, Beta and Gamma functions, relation between Beta and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations—variable			riable.	
and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	•			
and Gamma functions simple problems. Approximate Integrations- Trapezoidal rule and Simpson's rule Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable				06 Hr
Chapter No. 3 Laplace Transforms: Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	•	le problems. Approximate Integra	ations- Trapezoidal rule	
Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. **Unit - II** Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	·			
Unit - II Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	•		as of dominations and	
Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable		•		09 Hr
Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	, , , , , , , , , , , , , , , , , , , ,			
Chapter No. 4 Fourier Series: Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Tunctions. Inverse Transform	· ·	CIII.	
Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	Chanter No. 4 Fourier Series			
Signals: Fourier Series representations, Derivation of Complex Co-efficient of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations —variable	-		sses of signals Periodic	
Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	•	•	•	
and phase spectra of a periodic signal. Properties of Fourier Series(with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable			•	
Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	-		•	08 Hr
Parseval's theorem and Examples on these properties. Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable			• • • •	
Chapter No. 5 Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	differentiation coefficient	s, Time domain Convolution, M	Iultiplication Theorem,	
Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Parseval's theorem and Exam	mples on these properties.		
Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Chapter No. 5 Fourier Trans	form:		
Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Fourier representation of	non-periodic signals, Magnitud	e and phase spectra.	
Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift,			06 Hı
Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain			00111
Chapter No. 6 Ordinary Differential Equations of first order: Introduction, order and degree of equation, Solution of first order first-degree differential equations –variable	Convolution, Multiplication Theorem, Parseval's theorem and Examples on these			
degree of equation, Solution of first order first-degree differential equations –variable	· ·			
. · · · · · · · · · · · · · · · · · · ·	-			
		G	•	06 Hı

CONTROLLED COPY KLE Tech Confidential

Unit - III

differential equations by Laplace transform method.

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Chapter No. 7 Numerical solution of Initial value problem: Numerical solution of initial value problems by Euler's Method, Modified Euler's method and Runge Kutta Method	05 Hrs
Chapter No. 8 Differential equations of higher orders: Differential equations of second and higher order with constant coefficients	05 Hrs

Text Books:

- 1. Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.
- 2. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003

Reference Books:

- 1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007
- 2. Ganesh Rao and and Satish Tunga, Signals and Systems, Sanguine T, 2004.
- 3. Simon Haykin, Barry Van Veen, Signals and Systems, John Wiley, 2002
- **4.** Ian Glover & Peter Grant, Digital Communications, 2nd Ed, Pearson 2012.

<u>Back</u>

cument #:	
MCD2005	

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: III	
Course Title: Corporate Cor	mmunication	Course Code: 24EHSA201	L
L-T-P: 0-0-0	Credits: 0	Contact Hrs: 2Hrs/week	
ISA Marks: 100	ESA Marks: 0	Total Marks: 100	
Teaching Hrs: 16	Exam Duration: N.A.		
	Content		
Chapter No. 1. Communica	tion Skills		
Tools of Communication,	Listening, Body Language,	Common Postures and	
Gestures, Open and Close	ed Body Language, Body L	anguage to be used in	04 Hrs
Corporate Scenarios, Voice	: Pitch, Pace, and Pause, Vei	bal Language: Positive &	
Negative Vocabulary, Corpo	orate Conversations		
Chapter No. 2. Presentation	n Skills		
Zero Presentation, Individua	al Presentations, and feedba	ck, Making Presentations	04 Hrs
Interactive, Types of Questions, Taking off and Signing off differently, Captivating			041113
your Audience, Corporate P	resentations		
Chapter No. 3. Spoken Engl	lish		
Phonetic and Non-Phonetic	c Languages, Introduction to	o IPA, Sounds in English,	04 Hrs
Syllables, Word Stress, Rhyt	hm, Pausing, and Intonation		
Chapter No. 4. Written Eng			
Vocabulary Enhancement	Strategies, Root Words	in English, Grammar	04 Hrs
Improvement Techniques, I	Dictionary Usage, Similar and	Contradictory Words	
Reference Books:			
	nicate With Confidence, McC		
2. Norman Lewis–Word Po	ower Made Easy, Goyal Publi	shers	
3. Cambridge Advanced Le	earner's Dictionary, Cambrid	ge University Press.	

<u>Back</u>

Q	FORM	Document #: FMCD2005
KLE TECH.	ISO 21001:2018	

Reference Books:

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG	rogram: UG Semester: III			
Course Title: Circuit Analysis Course Code: 19EEEC2		201		
L-T-P: 4-0-0	Credits: 4	Conta	Contact Hours: 4 Hrs/ Week	
ISA Marks: 50	ESA Marks: 50	Total	Total Marks: 100	
Teaching Hours: 50	Exam Duration: 3 Hou	rs		
	Unit-I			
Chapter No.1 Networ transformation, Nodal Ar Network Topology, Tie Se	nalysis, Super node, Mes	h Analysis, Super	mesh, Duality,	10 Hrs
Chapter No.2 Network Thevenin's & Norton's Theorem, Reciprocity pronetworks	neorems, Maximum Pow	er Transfer Theo	rem, Millman's	10 Hrs
	Unit-II			
Chapter No.3 Two Port representations, Input a Cascade network connections.	nd output impedance of	calculation, Serie		04 Hrs
Chapter No.4 First order System Governing equati Transient response with C, R-L circuits as diffe domain responses R-C, F	on, System Characteristi initial conditions, Freque rentiator and integrato	c equation, Basic ncy response ch r models, time	RL & RC circuit, aracteristics, Rand frequency	06 Hrs
Chapter No.5 Higher ord time domain and frequer response, Damping facto frequency curve and its circuit, Tank circuit, Reso	ncy domain representations, Quality factor, Freque relation to damping fa	n, Series R-L-C ci ncy response cu ctor, Resonance	rcuit, Transient ve , Peaking of	10 Hrs
	Unit-III			
Chapter No.6 Sinusoida Forced response to sinus Phasor diagrams.				05 Hrs
Chapter No.7 Polyphase system, Three phase Y-Y unbalanced three phase	connection, Delta conr	· -		05 Hrs
Text Books 1. W. H. Hayt, J. E. Kemi Hill, 2006 2. M. E. Van Valkenburg	merly, S. M. Durbin, Engi	_		Graw

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

- 1. Joseph Edminister, Mahmood Nahavi, Electric Circuits, 3rd, Tata McGra, 1991
- 2. Bruce Carlson, Circuits, 3rd, Thomson Le, 2002
- 3. V. K. Aatre, Network Theory and Filter Design, 2nd, Wiley West, 2002
- 4. Anant Agarwal and Jeffrey H Lang, Foundations of Analog & Digital Electronics Circuits, 3rd, Morgan Kau, 2006
- 5. Muhammad H . Rashid, Introduction to PSPICE using OrCAD for circuits and Electronics, 3rd, Pearson Ed, 2005

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG		Semester: III	
Course Title: Analog Electronics Circuits Course Code: 23EEEC20		ırse Code: 23EEEC201	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/w	eek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Exam Duration: 3 Hrs		
	Unit-I		
Chapter 1:Diode Models and			
Diode models: Exponential m	-		
model, ideal diode mode	·		06 Hrs
representations. Application	• •	•	
with/without DC voltage biasi			
on diode models and applicat	· · · · · · · · · · · · · · · · · · ·	2.6.1to 2.6.3.)	
Chapter 2: Bipolar junction to		amageta Diasina of DIT.	
BJT: Transfer characteristics,	•		
voltage divider technique. Sn port H modelling AC analysis		-	05 Hrs
amplifier parameters. Import			
		•	
Operation of BJT as a switch. (T1: 3.2.1,3.2.2, 3.2.3, 3.2.4, 3.3.1, 3.3.2, 3.3.4) Chapter 3: MOSFETs structure and physical operation:			
MOSFET Device structure, types of MOSFET's, working principle and operation of			
NMOS: Depletion type-opera	·	•	
voltage and Enhancement t			
negative gate voltage creati			
operation as V _{DS} is increas	sed. Derivation of threshold	d voltage of MOSFET.	
Operating the MOS transistor	in the sub threshold region, p	oinch off effect, channel	09 Hrs
length modulation effect. De	erivation of the drain current	in different regions of	
operation, I _D -V _{DS} relationship		_	
output resistance (r _{DS} on). PM		• • •	
the I _D v/s V _{DS} characteristic		•	
temperature effects, breakdo		circuit representations	
using MOSFET and numerical.			
Chapter 4: Biasing of MOSFE	Unit-II		
-		· Ry fiving Voc. By fiving	
MOSFET circuits at DC continued. Biasing MOSFET circuits: By fixing V _{GS} , By fixing V _G , With drain to gate feedback resistor, Constant current source biasing,			
Application of MOSFET as a		<u>-</u>	08 Hrs
amplifier and numerical. (T1:4.3)			
Chapter 5: MOSFET amplifiers and Introduction to FinFET Technology			
Small signal operation and its			12 Hrs
single stage amplifiers. Deriva	ation of CS, CG and CD ampli	fiers parameters and its	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

comparison. Implications on gain and Bandwidth. High frequency model of the MOSFET considering the internal capacitance. introduction to Fin Field Effect Transistor , Challenges of MOSFET Scaling at Nanometer Mode, Active Area, Fin width, height and pitch, Threshold Voltage and Gate Work function Requirements, Gate EWF and Gate Induced Drain Leakage, V-I Characteristics (T1:4.4,4.5, 4.6.1 to 4.6.7 ; 4.7.1, 4.7.2, 4.7.3, 4.7.5, 4.7.6, 4.7.7;4.8.1,4.8.2,4.8.3,4.8.4, 4.9.1 to 4.9.3) (T4: 1.1, 1.2) (R5: 2.1, 2.3)	
Unit-III	
Chapter 6: Feedback Amplifiers General feedback structure (Block schematic) and types of feedback topologies. Feedback Amplifiers: series-shunt feedback amplifier, series-series feedback amplifier, and shunt-shunt and shunt-series feedback amplifier with examples. Feedback de-sensitivity factor, Nyquist stability Criterion for positive and negative feedback circuits. Oscillators: RC phase shift oscillator, wein bridge Oscillator, merits of negative feedback, feedback topologies. Numericals on feedback topologies and oscillators. (T1:7.1 to 7.6)	05 Hrs
Chapter 7: Large Signal Amplifiers Classification of amplifiers: (A, B, AB and C) transformer less and transformer coupled amplifier. Transistor case and heat sink. Derivation of power efficiency and power dissipation for different types of large signal amplifiers(T1:12.1 to 12.6;12.8.4)	05 Hrs
Text Books:	

Text Books:

- 1. A.S. Sedra & K.C. Smith, Microelectronic Circuits, 5th Edition, Oxford Univ. Press, 1999
- 2. Jacob Millman and Christos Halkias, Integrated Electronics, McGraw Hill, 2000
- 3. Electronic Devices and Circuit Theory, Robert Boylestad Louis Nashelsky, 11th Edition, Pearson, 2015
- 4. FinFET Devices for VLSI Circuits and Systems

Reference Books:

- 1. David A. Bell, Electronic Devices and Circuits, 4th edition, PHI publication, 2007Grey, Hurst, Lewis and Meyer, Analysis and design of analog integrated circuits 4th edition,
- 2. Thomas L. Floyd, Electronic devices, Pearson Education, 2002
- 3. Richard R. Spencer & Mohammed S. Ghousi, Introduction to Electronic Circuit Design, Pearson Education, 2003
- 4. J. Millman & A. Grabel, Microelectronics, 2nd edition, McGraw Hill, 1987
- 5. FinFETs and Other Multi-Gate Transistors

Back

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course	wise	Year:2023-27

Program: UG		Semester: III	
Course Title: Electrical Power Distribution	Generation, Transmission &	Course Code: 24EEEC201	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs /week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Exam Duration: 3 Hrs		
	Unit-I		
Chapter No. 1. Generating Sta	tions.		
Selection of Site, Classification,	, General arrangement and ope	ration of Hydroelectric plant	
with components, General ar	rangement and operation of	Thermal power plant with	5 hrs
components, General arrang	gement and operation of N	luclear power plant with	
components, Safety of Nuclear	power reactor.		
Chapter No. 2. Typical Transm			
Substations: Types, Bus-bar ar	_		
variable Load on power station	ns, Economics: Important terms	and curves commonly used	
in system operation, Interconn	ection of power stations, Gene	erator Scheduling, Tariff.	
Introduction to electric supply	system, comparison of HVAC a	and HVDC systems, Standard	10 hrs
Voltages of Transmission & Dis	tribution Advantages of High \	Voltage Power Transmission.	10 1113
Feeders, Distributors & Service	Mains. Conductor types.		
	conductors, single phase and t		
circuit and double circuit. Spacing of conductors, Length of span & Sag in OH lines,			
Corona Phenomena & Factors affecting corona in OH lines			
	Unit-II		
Chapter No. 3. Line parameter			
Introduction to transmission I		-	
Distributed resistance of the			07 hrs
•	lation with equilateral and un		07 1113
lines. Transposition of line con		•	
Numerical solutions on resista		-	
<u>.</u>	& Performance of Power tran		
Introduction to Short, Medium	•		08 hrs
Performance calculations for S	hort transmission lines, Mediu	m transmission lines and	
ABCD constants			
	Unit-III		
Chapter No. 5. Insulators & Ur			
Materials of insulators. Different types of insulators. Potential distribution over a string of			
suspension insulators. String ef			05 hrs
of insulators. Underground Cables: Types of cables & material used for Insulation.			
Resistance, thermal rating of cables & charging current, grading of cables Capacitance			
grading and inter sheath gradi	ng, testing of cables		

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Chapter	No. 6.	Power	Qual	lity
---------	--------	-------	------	------

Power quality Definition, Power Quality=Voltage Quality, Concerns about Power Quality, Power Quality Evaluation Procedure, Terms and Definitions of Power Quality. Power Quality Benchmarking Process.

05 hrs

Text Books:

- 1. V. K. Metha and Rohit Metha., Principles of Power System. S Chand & Company Ltd., 2020.
- 2. S. M. Singh, Electric Power generation, transmission and Distribution. Prentice Hall of India., 2012.
- 3. Roger C. Dugan, Mark F. McGranaghan, Surya Santoso, H. Wayne Beaty, Electrical Power Systems Quality, Third Edition

Reference Books:

- Electric power generation, transmission, and distribution, Third Edition Edited by Leonard L. Grigsby, 2012
- 2. Soni, Gupta and Bhatnagar, A Course in Electrical Power, Dhanpatrai, 2014
- 3. J. B. Gupta., Transmission and Distribution of Electrical power., Kataria, 2012
- 4. Skrotzki and Wavopat, Power station Engineering and economics., McGraw Hill, 1995

Back

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: III		
Course Title: Digital Circuits		Course Code: 19EEEC2	203	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs /	/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Exam Duration: 3 Hrs			
Unit-I				
Chapter No.1 Logic Families:			02 Hrs	
Logic levels, output switching t	imes, fan-in and fan-out, comp	arison of logic families	02 1113	
Chapter No.2 Principles of Combinational Logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, incompletely specified functions (Don't care terms), Simplifying Maxterm equations, Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Decimal method, Reduced Prime Implicant Tables.			09 Hrs	
Chapter No.3 Analysis and design of combinational logic: General approach, Decoders-BCD decoders, Encoders, Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry adders, Binary comparators.			09 Hrs	
	Unit-II			
Chapter No.4 Introduction to Sequential Circuits: Basic Bistable Element, Latches, A SR Latch, Application of SR Latch, A Switch De bouncer, The SR Latch, The gated SR Latch, The gated D Latch, The Master-Slave Flip-Flops (Pulse-Triggered Flip-Flops): The Master-Slave SR Flip-Flops, The Master-Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop, Negative-Edge Triggered D Flip-Flop; Characteristic Equations. Chapter No.			10 Hrs	
Chapter No.5 Analysis of Sequential Circuits: Registers and Counters, Binary Ripple Counters, Synchronous Binary counters, Ring and Johnson Counters, Design of a Synchronous counters, Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops Design of a Synchronous Mod-n Counter using clocked D, T or SR Flip-Flops.		10 Hrs		
Unit-III				
Chapter No.6 Sequential Circuit Design Introduction to Sequential Circuit Design, Mealy and Moore Models, State Machine notations, Synchronous Sequential Circuit Analysis, Construction of state Diagrams and counter design.			05 Hrs	
Chapter No.7 Introduction to National Introduction and role of me terminology, Read Only memory, SRAM, DRAM, NVRAM	mory in a computer system ry, MROM, PROM, EPROM, EEF	· · · · ·	05 Hrs	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Text Books:

- 1. Donald D. Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002
- 2. John M. Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A. Anand Kumar, Fundamentals of digital circuits, PHI, 2003

Reference Books:

- 1. Charles H. Roth, Fundamentals of Logic Design, Thomson Learning, 2004
- 2. Zvi Kohavi, Switching and Finite Automata Theory, 2nd, TMH
- 3. R.D. Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 4. R. P. Jain, Modern Digital Electronics, 2nd, Tata McGraw Hill, 2000

Back

FMCD2005 Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: III		
Course Title: Microcontrolle	er Architecture & Programming	Course Code: 24EE	EF201	
LTP: 2-0-1	LTP: 2-0-1 Credits: 3 Contact Hours: 6 H		Irs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 72 Hrs	Examination Duration: 2 Hrs			
	Unit -I	1		
Chapter 1: Microprocessors	s and Microcontroller			
Introduction, Microprocess	ors and Microcontrollers, A Micro	controller Survey,	02 Hrs	
RISC & CISC CPU Architectu	res, Harvard & Von-Neumann CPU	architecture.		
Chapter 2: The 8051 Archit	ecture			
8051 Microcontroller Har	dware, Input / Output Pins, Po	orts and Circuits,	04 Hrs	
	nterfacing external RAM & ROM m	emories.		
Chapter 3: Addressing Mod	les and Arithmetic Operations			
	data Moves, Code Memory, Read			
,	Pata exchanges, stack concept and r			
	ical Operations: Introduction, E	•	04 Hrs	
_	l Operations , Rotate and Swap Op		0	
, ,	erations: Introduction, Flags, I	_		
Decrementing, Addition, Subtraction Multiplication and Division, Decimal				
Arithmetic, Example Progra				
	Unit – II			
Chapter 4: Branch operation		. "	02.11	
	ion, The JUMP and CALL, Program	range, Jump calls	03 Hrs	
	and Returns, Example Problems.			
Chapter 5: 8051 Programm	_	s anarations Data	04 Urc	
	s in 8051C,I/O Programming, Logi ssing code ROM space,. Data seriali	•	04 Hrs	
Chapter 6: Counter/Timer I		Zation.		
•	Programming III 8051 Programming Timer0 and Timer1 i	20510	03 Hrs	
Frogramming 8031 milets,	Unit – III	190310		
Chapter 7: Serial Communi				
Basics of Serial Communication, 8051 connections to RS-232,8051 Serial			04 Hrs	
	gramming, Serial port programmin		041113	
Chapter 8: 8051 interfacing and applications				
	/board, ADC, DAC, Stepper Motor,	DC Motor.	04 Hrs	
Chapter 9: Interrupts	,			
	interrupts vs polling, classificat	ion of interrupts,	02 Hrs	
	vector table, interrupt service rout	• '		

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Text Books:

1. "The 8051 Microcontroller Architecture, Programming & Applications" by 'Kenneth J. Ayala', Penram International, 1996

2. "The 8051 Microcontroller and Embedded systems", by 'Muhammad Ali Mazidi and Janice Gillispie Mazidi', Pearson Education, 2003

Reference Books:

1. " Programming and Customizing the 8051 Microcontroller ", by 'Predko', TMH.

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Semester: III
Laboratory Title: Analog Electronics Lab		Course Code: 23EEEP201
L-T-P: 0-0-1 Credits: 1		Contact Hours: 2 Hrs /week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 24Hrs	Examination Duration: 2 Hrs	

List of Experiments:

- 1. Study of multi-meters, power supplies, function generators, Oscilloscopes; Identification of various components and devices, e.g. resistors, capacitors, diodes, transistors.
- 2. Design & analyze Diode Clipping circuits.
- 3. Design & analyze Positive and Negative Clamping circuits.
- 4. Study of BJT as a Switch.
- 5. Study the input and output characteristics of MOSFET.
- 6. To study the basic current mirror circuit.
- 7. MOSFET as a source follower (Buffer).
- 8. Study of transformer-less Class B push pull power amplifier and determination of its conversion efficiency
- 9. Design an amplifier using BJT and determine its gain, input, output impedance and frequency response of RC Coupled single stage BJT amplifier
- 10. Design an amplifier using MOSFET and determine its gain, input, output impedance and frequency response of a CS amplifier.
- 11. Design a regulated power supply for the given specifications

Reference Books

- "Integrated Electronics", by Jacob Millman and Christos Halkias, McGraw Hill,
- 2. "Microelectronic Circuits", by A.S. Sedra & K.C. Smith, 7th Edition, Oxford Univ. Press,
- 3. "Electronic Devices and Circuits" by David A. Bell, 4thedition, PHI publication 2007.
- 4. "Analysis and design of analog integrated circuits," by Grey, Hurst, Lewis and Meyer, 4th edition.
- 5. Device data sheets.
- 6. KLETECH Electronics and Communication Engineering Department 2023-24 Analog Electronics Lab manual.

<u>Back</u>

^{**}Note-All above experiments are to be conducted along with simulation.

^{*}Analog Electronic Circuits Lab: Simulation of designed circuits using LTSpice Simulator, before implementing the circuits on breadboard.

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	Title: Curriculum Content Course wise		Vaar:2022_27

Program: UG		Semester: III
Course Title: Digital Circuits lab		Course Code: 15EEEP203
L-T-P: 0-0-1 Credits: 1		Contact Hours: 2 Hrs /week
ISA Marks: 80 ESA Marks: 20		Total Marks: 100
Laboratory Hours: 28 Examination Duration: 2 Hrs		
List of Experiments:		

Demonstration

Expt. No.1 Verify the truth tables of AND, NOT, OR, XOR, XNOR, NAND & NOR gates using IC's

Expt. No.2 Characterization of TTL Gates – Propagation delay, Fan-in, Fan-out and Noise Margin.

Expt. No.3 To verify of Flip-flops (a) JK Master Slave (b) T-type and (c) D-Type

Exercise

Expt. No.4 Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD code converters.

Expt. No.5 Design and implement BCD adder and Subtractor using 4 bit parallel adder.

Expt. No.6 Design and implement n bit magnitude comparator using 4- bit comparators.

Expt. No.7 Design and implement Ring and Johnson counter using shift register.

Expt. No.8 Design and implement mod-6 synchronous and asynchronous counters using flip flops.

Structured Enquiry

Expt. No.9 Design and implement given functionality using decoders and multiplexers

Expt. No.10 Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results on a general purpose PCB.

Reference Books:

1. Donald D. Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev:
-----------	------------------------	-------------------------	------

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester : III	
Course Title: C Programming		Course Code: 18EEEF201	
L-T-P: 0-0-2	Credits: 2	Contact Hrs : 04 Hrs/week	
ISA Marks : 80	ESA Marks : 20	Total Marks : 100	
Teaching Hrs: 48	Exam Duration:2 Hrs		
Expt. 1 Introduction to C Prog	gramming		02 Hrs
Introduction to algorithms / f	lowcharts and its notation	S.	UZ 1115
Expt. 2 Basics of C programm	ing language		
Characteristics and uses of Identifiers, Variables, Cons		• •	07 Hrs
statements.		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Expt. 3 Decision control state	ements		
Conditional branching staten		e statement, else if ladder,	06 Hrs
switch statement, unconditio	nal branching statements:	break, continue.	
Expt. 4 Iterative statements			02.11
while, do while, for, nested statements			03 Hrs
Expt. 5 Functions			
Introduction, Function decla	aration, definition, call, r	eturns statement, passing	10 Hrs
parameters to functions, intro	oduction to macros.		
Expt. 6 Arrays and Strings			
Introduction, Declaration, Ac	cessing elements, Storing	values in arrays, Operations	10 Hrs
on one dimensional array, Op	erations on two dimension	nal arrays,	
Expt. 7 Pointers			
Introduction, declaring pointe	• •	•	05 Hrs
passing arguments to function	ns using pointers, pointers	and arrays, passing an array	05 1113
to a function.			
Expt. 8 Structures and Union			05 Hrs
Introduction, passing structur	res to functions, Array of st	ructures, Unions	05 1113
Text Books			

1. Yashvant Kanetkar, Let us C ,15th ed, BPS Publication, 2016.

Reference Books:

- 1. B. W. Kernighan, D M Ritchie, The Programming language C, 2ed, PHI, 2004.
- 2. B. S. Gottfried, Programming with C, 2ed, TMH, 2006.
- 3. B.A. Forouzan, R.F. Gilberg, A Structured Program Approach Using C, 3ed, CENGAGE Learning, 2008.

<u>Back</u>

1.0

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

IV Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Semester: IV	
Course Title: Linear Alg equations	gebra and Partial differential	Course Code: 15EMAB20	8
L-T-P: 4-0-0	Credits: 04	Contact Hours: 04 Hrs/w	reek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 3 Hrs		
	Unit-I		
Chapter No. 1 Matrices and Linear Equations: Introduction, Geometry of Linear equations, Elementary operations, Systems in Echelon form, pivot and free variables, Gaussian elimination, Application to electrical circuits			
Chapter No.2 Vector sp Vector Spaces and Sub	paces: pospaces, Solving AX=0 and AX=B	3, Linear combination of	00 11
vectors, spanning set, L Row space and Null spa	inear independence, Basis and Di ce	mensions, Column space,	08 Hrs
Inner product spaces,	Chapter No. 3 Orthogonality: Inner product spaces, Orthogonal and Orthonormal vectors, Gram-Schmidt process, QR-factorization; Eigenvalues and Eigenvectors, Diagonalizing matrices		
Unit-II			
Chapter No.4 Partial differential equations: Introduction, classification of PDE, Formation of PDE, Solution of equation of the type Pp + Qq = R, Solution of partial differential equation by direct integration methods, method of separation of variables. Modelling: Vibration of string-wave equation, heat equation. Laplace equation. Solution by method of separation of variables			
Chapter No.5 Finite difference method: Finite difference approximations to derivatives, finite difference solution of parabolic PDE, explicit and implicit methods; Hyperbolic PDE-explicit method, Elliptic PDE-initial-boundary Value problems			10 Hrs
	Unit-III		
Chapter No.6 Complex analysis: Function of complex variables. Limits, continuity and differentiability. Analytic functions, C-R equations in Cartesian and polar forms, construction of Analytic functions (Cartesian and polar forms).			05 Hrs
	Integration heorem- corollaries, Cauchy's inte ities, Poles, Residue theorem – pr	=	05 Hrs
Text Books 1. Gilbert Strang, L	inear Algebra and its Applications	, 4ed, Thomson India Editio	on, 2007.

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

- 2. David C. Lay, Linear Algebra and its Applications, 3ed, Pearson India, 2009
- 3. Peter V. O'neil, Advanced Engineering Mathematics, Thmoson Books/Cole, Singapore
- 4. Advanced Engineering Mathematics, 3ed, Dennis G. Zill and Michael R. Cullin, Narosa Publishing House, New Delhi, 2009

Reference Books:

- 1. Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.
- 2. Schaum's Outline of Linear Algebra Seymour Lipschutz, Marc Lipson 4ed, McGraw Hill India 2009
- 3. Stanley J. Farlow, Partial differential equations for Scientists and Engineers, Dover publications, INC, New York, 1993

Back

Document #: FMCD2005

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG Semester: IV			
Course Title: Vector Calculus and Differential equations Course Code: 15EMAB			3242
L-T-P: 4-0-0 Credits: 4		Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hrs		
	Unit – I		
Chapter No. 1 Partial differentiation Function of several variables, Partial derivatives, Chain rule, Errors and approximations			
Chapter No. 2 Multiple integrals Double integral, Evaluation by change of order, change of variables, simple problems, Triple integrals simple problems			07 Hrs
Chapter No. 3 Vector Algebra Vector addition, multiplication (Dot and Cross products), Triple products,			06 Hrs
Unit – II			
Chapter No. 4 Vector Calculus Vector functions, Vector differentiation, Velocity and Acceleration of a vector point function, Vector fields, Gradient and directional derivatives. Line and Surface integrals. Independence of path and potential functions. Green's theorem, Divergence of vector field, Divergence theorem, Curl of vector field. Stokes theorem.			20 Hrs
Unit – III			
Chapter No. 5 Partial differential equations (a) Introduction, classification of PDE, Formation of PDE, Solution of equation of the type Pp + Qq = R, Solution of partial differential equation by direct integration methods, method of separation of variables. (b) Modeling: Vibration of one-dimensional string-wave equation and heat equation. Laplace equation. solution by method of separation of variables			10 Hrs

Text Books:

- 1. Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.
- 2. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003Early Transcendental Calculus James Stewart, Thomson Book's 5e 2007

Reference Books:

- 1. Early Transcendentals Calculus- James Stewart, Thomson Books, 5e 2007
- 2. Grewal B S, Higher Engineering Mathematics, 38ed, Khanna Publication, New Delhi, 2001

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vaar:2022-27	

Program: UG		Semester: IV	
Course Title: Problem Solving & Analysis		Course Code: 24EHSA202	
L-T-P: 0-0-0	Credits: 0	Contact Hrs: 2 Hrs/week	
ISA Marks: 100	ESA Marks: 0	Total Marks: 100	
Teaching Hrs: 16	Exam Duration: N.A.		
	Content		Hours
Chapter No. 1. Analytical Thi	nking		
Analysis of Problems, Puzzles	for practice, Human Relations	, Direction Tests; Looking	04 Hrs
for Patterns: Number and Alp	phabet Series, Coding Decodin	g; Diagrammatic Solving:	U4 HIS
Sets and Venn diagram-based	l puzzles; Visual Reasoning, Clo	cks and Calendars	
Chapter No. 2. Mathematica	l Thinking		
Number System, Factors and	Multiples, Using Simple Equat	ions for Problem Solving,	04 Hrs
Ratio, Proportion, and Variati	on		
Chapter No. 3. Verbal Ability			
Problem Solving using Analogies, Sentence Completion			04 Hrs
Chapter No. 4. Discussions & Debates			
Team efforts in Problem Solving; A Zero Group Discussion, Mock Group Discussions,			
and Feedback; Discussion v/s Debate; Starting a Group Discussion: Recruitment and			
other Corporate Scenarios; Evaluation Parameters in a Recruitment Group Discussion,			
* *	d Thought, Conclusion of a Disc	ussion	
Reference Books:			
	ern Approach to Verbal and N	on – Verbal Reasoning",	
Sultan Chand and Sons,	•		
2. R. S. Aggarwal, "Quantitative Aptitude", Sultan Chand and Sons, New Delhi, 2018			
3. Chopra, "Verbal and Non – Verbal Reasoning", MacMillan India			
, ,	on Quicker Maths", BSC Publica	·	
	nicate With Confidence, Mc Gra		
	wer Made Easy, Goyal Publishe		
7. Cambridge Advanced Learner's Dictionary, Cambridge University Press.			
8. Kaplan's GRE guide	8. Kaplan's GRE guide		

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Semester: IV	Semester: IV	
Course Title: Electrical Machines		Course Code: 19EEEC204		
L-T-P: 4-0-0	Credits: 4	Contact Hours: 04 Hrs /wee		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Exam Duration: 3 Hrs			
	Unit – I			
Chapter 1: Transformers: Single phase transformer- Principle of operation and construction, Ideal transformer, Real transformer, Phasor diagrams, Equivalent circuit, Open-circuit test, Short-circuit test, Voltage regulation, Efficiency, Three phase transformers.			07 Hrs	
Chapter 2: Induction Machines: Construction, Fundamental relationships- Slip, Rotor speed, Input power, Electromagnetic power, Electromagnetic (developed) torque, Mechanical power, Efficiency, Shaft torque., Equivalent circuit, No-load and locked-rotor tests, Torque-speed characteristics, Starting, Speed control.			08 Hrs	
	Unit – II			
Chapter 3: DC Machines: Principle of operation, Construction of DC machine, Fundamental equations, Armature reaction, Classification of DC machines, DC generators, DC motors, Starting, Speed control of DC motors, Braking, Switched Reluctance Machines- Construction, Aligned and unaligned positions, Electromagnetic torque, Advantages, disadvantages and Applications of SRMs. Permanent magnet DC brushless motors.			08 Hrs	
Chapter 4 : Synchronous Machines : Construction, Classification of synchronous machines, Electromotive force induced in armature winding, Generator and motor operation, Phasor diagrams of synchronous machine with Non-salient pole rotor and salient pole rotor, Operation of synchronous generators, Synchronous motor.			07 Hrs	
	Unit – III			
Chapter 5 : Synchronous Machines: Permanent magnet synchronous motors, Air gap magnetic flux density, Equivalent circuit of PM synchronous machine, Phasor diagram, Performance Characteristics of PM synchronous machine, Starting.			05 Hrs	
Chapter 6: Single phase induction motors: Double revolving field theory, Equivalent circuit, Split-phase induction motor, Capacitor-start induction motor, Permanent split capacitor induction motor, Capacitor start capacitor-run induction motor, and Shaded pole induction motor.			05 Hrs	
	trical Machines: Fundament Taylor & Francis Group, 2017.	tals of Electromechanical	Energy	

Reference Books:

- 1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.
- 2. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

3. Mehrdad Ehsani[et al.], "Modern electric, Hybrid electric, and Fuel Cell Vehicles: fundamentals, theory, and design.", CRC Press, 2005.

4. T. J. E. Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.

Back

ICD2005	
CD2003	Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: IV		
Course Title: Linear Co	Course Title: Linear Control Systems			
L-T-P: 3-0-0	T-P: 3-0-0 Credits: 3 Contact Hours: 03 Hrs/w		eek	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Exam Duration: 3 Hrs			
	Unit-			
-	tion to control systems: oop control systems-defi	nitions, salient features and	02 Hrs	
Definition of transfer for signal flow graph representative feedback system electrical circuits, Mod	unction, assumptions aresentation, symbols use ems. Electrical systems: D	nck diagram representation: and properties, Block diagram and d. Block-diagram of negative and derivation of transfer functions for armature and field control, block- n rules, Examples.	06 Hrs	
response, importance second order system. specifications-definition	nd order, Standard test si of time constant, Secon Unit step response of	ignals. First order system: unit step nd order system: Standard T.F of 2 nd order system Time response me, peak time, peak overshot and state errors.	07 Hrs	
	Unit-I	I		
Explanation of Routh-		ms: sary and sufficient condition for ability, relative stability analysis.	05 Hrs	
Chapter No.5 Controller design approaches: Basic modes of controls and their features: On-Off, proportional, integral, PI, PD and PID, Controller design approaches- Zeigler Nichol's tuning method and Pole placement design method, design examples			05 Hrs	
Chapter No.6 Frequence Sinusoidal response: so functions. Frequency expressions of Frequence	cy response analysis: ystem response for sinu response of a second	usoidal inputs, sinusoidal transfer order system, definitions and ons. Polar plot: method to draw gain margin.	05 Hrs	
	Unit-II			
Bode plots: asymptotic		ems: method to draw Bode asymptotic phase margins from Bode plot.	05 Hrs	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Chapter No.8 Root locus diagrams:

Basic principle – magnitude and angle criterion, Rules to construct root locus diagram (proof not required), method to construct root locus diagram.


Text Books

- 1. Nagarath and Gopal, Control system Engineering, Wiley Eastern Ltd., 1995, 2nd edition.
- 2. Katsuhiko Ogata, *Modern Control Engineering*, PHI, 2002, 4th edition

Reference Books:

1. M.Gopal, Control Systems-Principles and Design, 2, TMH, 2002.

Back

Document #:	
FMCD2005	

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: IV		
Course Title: ARM Processor & Applications		Course Code: 23EEEC202		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 Exam Duration: 3 Hrs				
Unit - I				
Chapter No. 1 ARM Architecture				
The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI,			05 Hrs	
ARM programmers model, ARM development tools, 3 stage pipeline ARM			051113	
organization, ARM instruction execution.				
Chapter No. 2 Introduction to ARM instruction set				
Data processing instruction, Branch instruction, Load store instruction, Software			08 Hrs	
interrupt instruction, Program status register instruction, Conditional execution,			00 1113	
Example programs, Introduction to Thumb instructions and implementation				
Chapter No. 3 Assembler rules and Directives				
Introduction, structure of assembly language modules, Predefined register			02 Hrs	
names, frequently used directives, Macros, Miscellaneous assembler features,			02 1110	
Optimization techniques and examples.				
Unit - II				
Chapter No. 4 Exception handling				
Introduction, Interrupts, error conditions, processor exception sequence, the			04 Hrs	
vector table, Exception handlers, Exception priorities, Procedures for handling				
exceptions.				
Chapter No. 5 Introduction to Bus protocols:			04 Hrs	
12C, SPI, AMBA (Advanced Memory Bus Architecture): AHB, APB				
Chapter No. 6 LPC 2148 Controller Architectural overview and GPIO				
programming LPC2148 architectural overview, Registers, GPIO Programming: LED,LCD, Seven			07 Hrs	
			even	
segment, Stepper Motor, DC Motor, Buzzer, Switch, Keypad. Unit - III				
Chapter No. 7 On-chip programming techniques using LPC 2148 Controller				
ARM interfacing techniques and programming: Timers, RTC, UART, ADC, DAC, I2C			05 Hrs	
and External Interrupt.			05 1113	
Chapter No. 8 Architectural support for high level languages				
Abstraction in software design, data types, floating point data types, The ARM			05 Hrs	
floating point architecture, use of memory, run time environment.			3 חו	
Text Books:				

Text Books:

- 1. Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE, 2002
- 2. William Hohl, ARM Assembly Language fundamentals and Techniques, 1st, CRC press, 2009

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Reference Books:

1. "ARM system Developer's Guide"- Hardbound, Publication date: 2004 Imprint: MORGAN KAUFFMAN

2. User manual on LPC21XX.

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG Semester: IV			
Course Title: Signals and	Systems	Course Code: 19EEEC20)5
L-T-P: 3-0-0	T-P: 3-0-0 Credits:3 Contact Hours: 3 Hrs/v		eek
ISA Marks: 50	SEA Marks:50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 Hrs		
	Unit-l		
Chapter No. 1. Introduction and Classification of signals: Definition of signal and systems. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shifting and time folding. Systems: Definition, Classification: linear and nonlinear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.			08 Hrs
Chapter No. 2. Time domain representation of LTI System: Definition of impulse response, convolution sum, convolution integral ,computation of convolution sum using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Properties of convolution.			07 Hrs
	Unit-II		
Chapter No. 3. Fourier Representation of Periodic Signals: Fourier Representation of Periodic Signals: Introduction to CTFS and DTFS, definition, properties and basic problems.			05 Hrs
Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals.			10 Hrs
	Unit-III		
Region of convergence	forms: Introduction, the Z-transf , Properties of the Z-Transforn ion of discrete time of LTI systems	n, Inversion of the Z-	10 Hrs
Text Books:			
1. Simon Haykin and B	arry Van Veen, Signals and Syste	ems –2nd Edition, John	

<u>Back</u>

KLE Tech Confidential CONTROLLED COPY

Wiley, 2004

KLE TECH.	ISO 21001:2018 riculum Content Course	
2	FORM]

Reference Books:

Document #:	
FMCD2005	

Year:2023-27

Rev: 1.0

Program: UG		Semester: IV	
Course Title: Power Electro	nice	Course Code: 20EEEC20	11
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/v	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
		Total Warks: 100	
Teaching Hours: 40	Exam Duration: 3 Hrs		
Chantas No. 1 Introduction	Unit-l		
Chapter No. 1. Introduction		Control on The Dinds	02 11
	ter Classification, Electronic	Switches: The Diode,	02 Hrs
Thyristor, Transistors.			
Chapter No. 2. Power Comp		A Da	
	ergy, Instantaneous Power, E	• • •	04 Hrs
•	fective Values: RMS, Apparen	·	
	omputations for Sinusoidal	AC Circuits, Power	
Computations for non-sinus			
Chapter No. 3. DC-DC Conv			
	Properties and assumptions		
, and the second se	onships, output voltage ripple		09 Hrs
· •	ge and Current Relationships,		
	Voltage and Current Relatio	nsnips, Output voitage	
Ripple, Cuk converter. Unit-II			
Chapter No. 4. Inverters			
<u>-</u>	convertor the square wave	invertor Fourier cories	
· · · · · · · · · · · · · · · · · · ·	e converter, the square-wave distortion, pulse-width-modu		07 Hrs
switching, unipolar switching	· •	diated output. Dipolal	
Chapter No. 5. Controlled F	<u> </u>		
-	rectifier, resistive load, RL	load Pl-source load	
	ers, resistive load, RL load, dis	·	08 Hrs
	controlled rectifier with RL-S	·	00 1113
single-phase converter oper		ource Loud, controlled	
single phase converter oper	Unit-III		
Chapter No. 6. AC Voltage (
•	ase AC Voltage, Controller, E	Basic Operation, Single-	
,	istive Load, Single-Phase Con	, ,	05 Hrs
Static VAR Control.	2000, 56.0000 0011	an ne boud,	
	s, Snubber Circuits and Heat S	Sinks	
<u>-</u>	drive using buffers, MOSFE		05 Hrs
· · · · · · · · · · · · · · · · · · ·	lation, Over-current protectio	<u> </u>	
	Power Electronics, Tata McGr		hi, 2011.
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		, = 3 = = 1

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

1. Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3rd edition, PHI, New Delhi, 2000.

- 2. P. S. Bhimbra, Power Electronics, Khanna Publishers, 2007.
- 3. Umanand, Power Electronics, 2nd edition, Wiley-India Publications, New –Delhi, 2009.

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: IV Semester Bachelor of Engineering (Electrical & Electronics Engineering)				
Course Title: ARM Microcontroller Lab Course Code: 23EEEP202				
L-T-P: 0-0-1 Credits: 1		Contact Hours: 2 Hrs/week		
CIE Marks: 80	SEE Marks: 20	Total Marks: 100		
Teaching Hours: 25 Hrs Examination Duration: 2 Hrs				
Exercise Experiments				

Expt. No.1 Write an ALP to achieve the following arithmetic operations:

- i. 32 bit addition
- ii. 64 bit addition
- iii. Subtraction
- iv. Multiplication
- v. 32 bit binary divide

Apply suitable machine dependent optimization technique and analyze for memory and time consumed.

Expt. No.2 Write an ALP for the following using loops:

- i. Find the sum of 'N' 16 bit numbers
- ii. Find the maximum/minimum of N numbers
- iii. Find the factorial of a given number with and without a look up table.

Apply suitable machine dependent optimization technique and analyze for memory and time consumed.

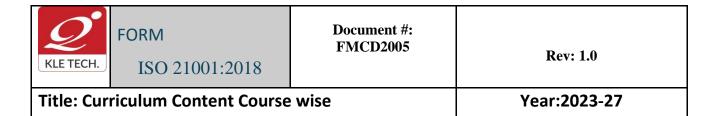
Expt. No.3 Write an ALP to

- i. Find the length of the carriage return terminated string.
- ii. Compare two strings for equality.

Apply suitable machine dependent optimization technique and analyze for memory and time consumed

Expt. No.4 Write an ALP to pass parameters to a subroutine to find the factorial of a number or prime number generation.

Apply suitable machine dependent optimization technique and analyze for memory and time consumed


Expt. No.5 Write a C program to test working of LEDs and seven-segment and Buzzer using LPC2148.

Expt. No.6 Write a C program to test working of 4X4 keypad, Stepper Motor and DC Motor to LPC2148

Expt. No.7 Develop a C program to demonstrate the concept of serial communication with an example.

Expt. No.8 Write a C program to sample analog data at a specified interval defined using the RTC.

Expt. No.9 Write a C program & demonstrate an interfacing of Alphanumeric I2C based 16x2 LCD panel.

Expt. No.10 Develop an application code to automate the entry of people in the conference hall where the door is opened every 1 sec to allow the entry of people.

Structured Enquiry

Expt. No.1 Develop an application code using embedded C to accept asynchronous inputs and control the connected device

Expt. No.2 Develop an application code using synchronous communication protocol to display the RTC value on a display device.

Open Ended

Expt. No.1 Develop an efficient ARM assembly language program that performs matrix multiplication of two square matrices (Matrix A and Matrix B, both of size N \times N) with minimum number of cycle count

The solution should include one on-chip peripheral and one off-chip peripheral

Expt. No.2 Develop an efficient firmware using ARM to demonstrate concept of a calculator with 4X4 keypad, comment on the performance in terms of time, memory and power utilization

<u>Back</u>

FMCD2005 Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Document #:

Program: UG		Semester : IV	
Course Title: Digital System Design using Verilog Course Code: 18EE		EP203	
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 80	SEA Marks:20	Total Marks: 100	
Teaching + Lab. Hours: 48 Hrs	Examination Duration: 2 Hrs		
	List of Experiments		
Expt. No. 1. Architecture of FPG	iA .		
Architecture of FPGS: Spartan 3,	What Is HDL, Verilog HDL Data	Types and	04 Hrs
Operators.			
Expt. No. 2. Data Flow Descript	ions		
Highlights of Data-Flow Descript	ions, Structure of Data-Flow Des	scription, Data Type	06 Hrs
– Vectors, Testbench.			
Expt. No. 3. Behavioral Descriptions			
Behavioral Description highlights, structure of HDL behavioral Description, The			10 Hrs
VHDL variable –Assignment Statement, sequential statements, Tasks and Functions			
Expt. No. 4. Structural Descript	ions		
Highlights of structural Description, Organization of the structural Descriptions,			
Binding, state Machines, Generate, Generic, and Parameter statements			
Expt. No. 5 Finite State Machine	2:		04 Hrs
Moore Machines, Mealy Machines			041113
Expt. No. 6 Timing Issues in Dig	ital Circuits:		
Setup Time Constraints, Hold Tir	ne Constraints, Static Time analy	sis, Critical Path,	06 Hrs
Clock Skew.			
Expt. No. 7. Advanced HDL Desc	•		08 Hrs
File operations in Verilog, Memo	ories: RAM, ROM, Block Memori	es(Xilinx IP)	30 1113

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG	rogram: UG Semester: IV		
Course Title: Data Structure:	urse Title: Data Structures Applications Lab Course Code: 23EEEF202		
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4Hrs/Week	
ISA marks: 80	ESA marks: 20	Total Marks: 100	
Teaching + Lab Hrs.: 48	Duration of ESA: 2 Hrs		
	Unit - I		
Chapter No 1. Analysis of algorithms: Introduction, Asymptotic notations and analysis, Analysis of recursive and non-recursive algorithms, master's theorem, complexity analysis of algorithms.			10 Hrs
Chapter No 2. Analysis of linear data-structures and its applications: Complexity analysis of basic data structures (Stacks, Queues, Linked lists)			10 Hrs
	Unit - II		
Chapter No 3. Analysis of non-linear data-structures and its applications Trees and applications: Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree. Graphs and applications: Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals. Hashing and applications: Hashing, Hash function, Hash Table, Collision resolution techniques, Hashing Applications			28 Hrs
Text Books: 1. Richard F. Gilberg & Behrouz A. Forouzan, Data Structures A Pseudocode Approach with C Second Edition.			

2. Aaron M. Tenenbaum, Data Structures Using C.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG		Semester: IV	
Course Title: Data Structures using (C	Course Code: 23EEEF203	
L-T-P-0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA: 80	ESA: 20	Total Marks :100	
Teaching + Lab. Hours: 72 Hrs	Exam Duration: 2 Hrs		
	Experiment List		
Expt. No. 1 Programs on pointer con	cepts		
Expt. No. 2 Programs on string hand	ling functions, structure ur	nion and bit files	
Expt. No. 3 Programming on files.			
Expt. No. 4 Programs on implementa	ation of stacks and its appl	ications.	
Expt. No. 5 Programs on implementation of different queue data structures.			
Expt. No. 6 Programs on implementation of different types of Linked lists			
Expt. No. 7 Programs on Implementa	ation of trees.		
Expt. No. 8 Programs to implement of	different sorting technique	25.	
Expt. No. 9 Programming on hash ta	bles		

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

V Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Semester: V	
Course Title: Electric Drive	es & Control	Course Code: 25EEEC301	
L-T-P: 2-0-1	T-P: 2-0-1 Credits: 3 Contact Hrs: 4 Hrs/week		
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 35	Lab Hrs: 10	Exam Duration: 3 Hrs	
	Unit-I		
Chapter No 1. Introduction to electric drives: Fundamental torque equation, speed toque conventions and multi-quadrant operation, components of load torque, nature and classification of load torques Control of electric drives: Closed loop control of drives: current limit control, closed loop torque control, closed loop speed control.			
Chapter No 2. DC motor drives: DC motor and their performance: shunt and separately excited motors, series motors, permanent magnet motors. Braking: regenerative braking, dynamic braking, plugging. Speed control, methods of armature control, chopper controlled dc drives, chopper control of separately excited dc motors, chopper control of series motor.			06 Hrs
	Unit II		
performance, Braking: reg speed control, variable fr Inverter (VSI) Control: VS	notor drives: Three phase ind generative braking, Plugging of equency control from voltag of induction motor drives, br of motor drives. Closed loop sp tor drives.	or reverse voltage braking, e sources, Voltage Source raking and multi-quadrant	10 Hrs
	Unit III		
Chapter No 4. Permanent magnet synchronous machines and BLDC drives: Permanent magnet synchronous motors, Electromotive force EMF (voltage induced), Electromagnetic (developed) torque, Vector control concepts, drive system schematics, control strategies, Permanent magnet DC brushless motors and its working principle.			05 Hrs
Chapter No 5. Switched Reluctance Motor drives: What is a switched reluctance machine, Aligned and unaligned positions, Electromagnetic torque, Power electronics converters for SRMs: Current hysteresis control, Voltage PWM control.			05 Hrs
Chapter No. 6. Solar and E Solar panels, motors suit powered electrical vehicle	able for pump drives, batter	y powered vehicles, solar	05 Hrs
La	b Experiments to be conduct	ed	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

1.	Simulation of Power Electronic Converters fed Drives using Matlab / Simulink or PLECS	02 Hrs
2.	Characterization of DC Motor	02 Hrs
3.	Speed Control of DC Motor	02 Hrs
4.	Characterization of Induction Motor	02 Hrs
5.	Volt / Hertz Speed Control of Induction Motor	02 Hrs
Tax	vt Books :	

Text Books:

1. G. K Dubey, "Fundamentals of Electrical Drives", 2nd ed., Narosa Publishing House, Chennai, 2002.

Reference Books:

- 1. N. K. De and P. K. Sen, Electrical Drives, PHI, 2007.
- 2. S. K. Pillai, A First Course On Electric Drives, Wiley Eastern Ltd, 1990.
- 3. V. R. Moorthi, Power Electronics, Devices, Circuits & Industrial Applications, Oxford University Press, 2005.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Contont Course	wico	Vaar: 2022 27

Program: UG		Semester: V	
Course Title: Power System	Analysis and Stability	Course Code: 17EEEC302	•
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/We	eek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Exam Duration: 3 Hrs		
	Unit-I		
Chapter No. 1: Power syste	m representation		
Standard symbols of power system components, one-line diagram, impedance and reactance diagrams, per-unit quantity-definition, per-unit impedance of 3-phase component, change of base, equivalent load impedance, p.u impedance of two-winding transformer referred to primary and secondary, method to draw p.u impedance diagram, advantages of p.u system calculations, examples on obtaining per-unit reactance diagram and per-unit calculations			
3-Phase short circuit at the transient, transient and ste examples on short circuit	Chapter No. 2: Symmetrical fault analysis 3-Phase short circuit at the terminals of unloaded generator, definitions of subtransient, transient and steady-state reactance, internal emf's of loaded machines, examples on short circuit calculations, selection of circuit breaker ratings-momentary current and interrupting capacity, examples on symmetrical fault calculations		
Definition of sequence co	n to Symmetrical components in the symmetrical components as applied to 3-photomorphisms on components, examples on components.	ase unbalanced systems,	04 Hrs
	Unit-II		
· ·	etworks sequence network, sequence networks of 3-phase loads and	•	04 Hrs
impedance at the termina sequence networks, Unsym	ical Fault Analysis to line and double line to s of unloaded generator- de metrical faults on unloaded po- tion for unloaded power system	rivation of connection of wer systems, examples on	07 Hrs
	to power system Stability SMIB system, steady-state a ng equation, equal area criteri Unit-III	•	04 Hrs
-	alysis by EAC: EAC application phase fault on transmission li	_	05 Hrs

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course	wise	Year:2023-27

Chapter No.8: Numerical solution of swing equation for stability analysis	
Point by point method of solving swing equation, applications of Euler, modified	05 Hrs
Euler and R-K numerical techniques for stability analysis, methods to improve	טט חוג
transient stability, examples on stability analysis	

Text Books:

- 1. W.D. Stevenson, Elements of Power System Analysis, 4th Edition, McGraw Hill, 1982
- 2. I.J. Nagarath and D.P. Kothari, Power System Engineering, 2nd Edition, Tata McGraw Hill, 2010

Reference Books:

- 1. Hadi Sadat, Power System Analysis, First Edition, Tata McGraw Hill, 2002
- 2. Nagarath and Kothari, Modern Power System Analysis, 2nd Edition, Tata McGraw Hill, 1993
- 3. J.J. Grainger and W.D. Stevenson, Power System Analysis, McGraw Hill (New York), 1994

Back

KLE Tech Confidential CONTROLLED COPY

85

Document #:	
FMCD2005	

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: V	
Course Title: OS & Embedded Systems		Course Code: 25EEEC302	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/We	ek
ISA Marks: 63	ESA Marks: 37	Total Marks: 100	
Teaching Hours: 40	Lab Hours: 20	Exam Duration: 2 Hrs	
	Unit-I		
Chapter No. 1: Introduction to	Operating System		
What is an operating system?	Goals of an operating syste	em. Operation of an OS.	03 Hrs
Operating System Services. Sys	tem Calls and Types. Opera	ating system Structure –	03 1113
Simple, Layered, Microkernels, I	Modules and Hybrid Systems	s. System Boot	
Chapter No. 2: Process Manage	ment		
Process concept- operating on	the process, inter-process	communication, process	
scheduling- CPU scheduler-pre	emptive scheduling, schedu	uling criteria, scheduling	05 Hrs
algorithms- first come, first ser	ved scheduling, shortest Job	first scheduling, priority	
scheduling, round robin schedu			
Chapter No. 3: Memory Manag			
Memory Management Strategic	•	,	06 Hrs
Swapping, memory allocation;	fragmentation, Paging, Se	egmentation and Virtual	00 1113
Memory.			
	Unit-II		
Chapter No. 4: Introduction To	• • •		
Introduction To Real-Time Oper			
real-time embedded system- re	•	•	08 Hrs
and the future of embedded s	•	· •	00 1113
RTOS, its kernel, components in	· · · · · · · · · · · · · · · · · · ·	pes: Preemptive priority-	
based scheduling, Round-robin			
Chapter No. 5: Tasks, Semapho	<u> </u>		
Task: Structure, Event Flags: S	•		08 Hrs
semaphore, mutual exclusion			
Structure, Uses. Priority Inversion	· · · · · · · · · · · · · · · · · · ·		
	Unit-III	_	
Chapter No. 6: Typical Embedd	-		
Classification and purposes of en		•	00.11
embedded system, Core and Su		•	08 Hrs
Bus Protocol, SPI, RS 485, wire	eiess protocois (Bluetooth,	802.11 and its variants,	
ZigBee)	Applications based on Co	ortov M. corice in DTOC	
Chapter No. 7: Case study:	Applications based on Co	Ditex-IVI Series III KIUS	02 Hrs
environment			
List of experiments	hin Timore in IDC2140 and a	onorato roquirod dolor	20 Hrs
1.Write a C program to use on c	inh timers in tros 149 and 8	enerate required delay	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

- 2. Write a C program to demonstrate the concept of basic RTOS programming by using RTX RTOS
- 3. Write a 'C' program & demonstrate concept of Round Robin Task Scheduling.
- 4. Write a C program to demonstrate the concept of basic preemptive scheduling algorithm by using RTX RTOS
- 5. Write a 'C' program & demonstrate concept of Events and Flags for inter task communication using RTX RTOS
- 6. Write a 'C' program & demonstrate concept of Mailbox.
- 7. Write a 'C' program & demonstrate concept of Semaphore.
- 8. Write a 'C' program & demonstrate concept of interrupts(hardware and software)
- 9. Write a C program to interface I2C-RTC with LPC2148.
- 10. Write a C program to interface SPI-EEPROM with LPC2148.

Text Books

- 1. Abraham Silberschatz, Galvin, Operating System concepts, 8th edition
- 2. Raj Kamal, Embedded Systems, 2nd edition
- 3. Shibu K. V., Introduction to Embedded systems, 6th reprint, 2012

Reference Books:

1. Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems, 1st edition

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG Se		Semester: V	
Course Title: Digital Signal Processing		Course Code: 20EE	EC301
L-T-P: 3-0-0 Credits: 3 Conta		Contact Hours: 3 H	rs/Week
ISA Marks: 50	SA Marks: 50 ESA Marks: 50 Total Marks: 100		
Teaching Hours: 40 Exam Duration: 3 Hrs			
	Unit-I		
Chapter No. 1. Discrete Fourier Transforms (DFT): Time and Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. Properties of DFT, multiplication of two DFTs- the circular convolution. Additional DFT properties, use of DFT in linear filtering, overlap-save and overlap-add method.			08 Hrs
Chapter No. 2. Fast-Fourier-Transform (FFT) algorithms: Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms) Radix-2 FFT algorithm for the computation of DFT and IDFT—decimation-in-time and decimation-in-frequency algorithms.			07 Hrs
Unit-II			
Chapter No. 3. IIR filter design: Characteristics of commonly used analog filter – Butterworth and Chebyshev filters, analog to analog frequency transformations. Design of IIR Filters from analog filter using Butterworth filter: Impulse invariance, Bilinear transformation.			
	ansformations. Design of	IIR Filters from analog filter	08 Hrs
	ansformations. Design of se invariance, Bilinear tra : lesign of FIR filters using	IIR Filters from analog filter nsformation.	08 Hrs 07 Hrs
using Butterworth filter: Impul. ChapterNo.4. FIR filter design: Introduction to FIR filters, d	ansformations. Design of se invariance, Bilinear tra : lesign of FIR filters using	IIR Filters from analog filter nsformation.	

Text Books:

1.John G. Proakis & Dimitris G. Manolakis, Digital Signal Processing, Third Edition, Prentice-Hall of India Pvt

Reference Books:

- 1. J. F. James, A Students Guide to Fourier Transforms With Applications in Physics and Engineering, Third Edition
- 2. Sanjit K. Mitra, Digital Signal Processing- A computer based approach, Tata McGraw-Hill Publishing Company Limited, New Delhi
- 3. Alan V. Oppenheim & Ronald W. Schafer, Discrete-Time Signal Processing, Prentice-Hall of India Pvt. Ltd

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Contant Course	wico	Vaar:2022_27

Program: UG Semester: V **Course Title: Linear Integrated Circuits** Course Code: 18EEEC301 L-T-P: 3-0-0 Credits: 3 Contact Hours: 3 Hrs/Week ISA Marks: 50 ESA Marks: 50 Total Marks: 100 **Teaching Hours: 40 Exam Duration: 3 Hrs** Unit-I **Chapter No. 1. Current Mirrors:** Current Mirror circuits and Modelling, Figures of merit (output impedance, voltage 05 Hrs swing), Widlar, Cascode and Wilson current Mirrors, Current source and current sink. Chapter No. 2. Basic OPAMP architecture: Basic differential amplifier, Common mode and difference mode gain, CMRR, 5-pack 06 Hrs differential amplifier, 7-pack operational amplifier, Slew rate limitation, Instability and Compensation, Bandwidth and frequency response curve Chapter No. 3. OPAMP characteristics: Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance, 04 Hrs output Offset voltage, Small signal and Large signal bandwidth. Unit-II Chapter No. 4. OPAMP with Feedback: OPAMP under Positive and Negative feedback, Impact Negative feedback on linearity, 05Hrs Offset voltage, Bandwidth, Input and Output impedances, Follower property, Inversion Chapter No. 5. Linear applications of OPAMP: DC and AC Amplifiers, Voltage Follower, Summing, Scaling and Averaging amplifiers (Inverting, Non-inverting and Differential configuration), Integrator, Differentiator, , 10 Hrs Current amplifiers, Instrumentation amplifier, Phase shifters, Voltage to current converter, Phase shift oscillator, Wein-bridge oscillator, Active Filters -First and second order Low pass & High pass filters. Unit-III Chapter No. 6. Nonlinear applications of OPAMP: Crossing detectors (ZCD. Comparator), Schmitt trigger circuits, Monostable & Astablemultivibrator, Triangular/rectangular wave generators, Waveform generator, Voltage 10 Hrs controlled Oscillator, Precision rectifiers, Limiting circuits. Clamping circuits, Peak

Text Books:

- 1. Sedra and Smith, "Microelectronics", 5th edition, Oxford University Press.
- 2. Ramakant A. Gayakwad, "Op Amps and Linear Integrated Circuits", 4th edition, PHI.

detectors, sample and hold circuits, Log and antilog amplifiers, Multiplier and divider

Reference Books:

Amplifiers, Voltage Regulators.

1. Robert. F. Coughlin & Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHI/Pearson, 2006.

Title: Cur	riculum Content Course	wise	Year:2023-27
2	FORM	Document #: FMCD2005	Rev: 1.0

- 2. James M. Fiore, "Op Amps and Linear Integrated Circuits", Thomson Learning, 2001.
- 3. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 3e, 2005.
- 4. David A. Bell, "Operational Amplifiers and Linear IC's", 2nd edition, PHI/Pearson, 2004.

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		V Semester	
Course Title: Machine Learning & Deep Learning		Course Code: 24EEE	C302
L-T-P: 2-0-2 Credits: 4		Contact Hrs: 6 Hrs/week	
SA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs.: 40	Exam Duration: 3 Hrs		
-	Unit I		
Chapter No.1 Introduction Motivation, History and Evolution, Definition (ETP, Examples), Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning.			03 Hrs
Chapter No. 2 Supervised Learning Model Representation: Basic Terminologies (Variable/features, Input, Output, Model, Learning Algorithm, Hypothesis, Cost/Loss function) Linear Regression: Single Variable (Representation of hypothesis, cost function, Optimization: Sum of squared error (L1 and L2), parameters/weights, bias) without bias and with bias. Model Optimization: Introducing Iterative optimization (Sum of squares error function, Gradient descent algorithm) and non-iterative optimization. Linear Regression: Polynomial Regression and Multi-variable Regression (Representation of hypothesis, cost function, Optimization). Model Optimization: Gradient descent algorithm (Learning rate/ step size, Normalization/ Feature Scaling). Model Optimization: Non-iterative optimization (Normal Equation). Logistic Regression: Hypothesis Representation, Decision boundary, Cost function, Logistic Regression: Optimization (Gradient Descent), Multi-class classification (One-vsall classification using logistic regression),			
Linear Regression: Polynomia (Representation of hypothesis, Gradient descent algorithm (L Scaling).Model Optimization: No Logistic Regression: Hypothesis Logistic Regression: Optimization Multi-class classification (One-v	rithm) and non-iterative optimal Regression and Multi-values cost function, Optimization). No earning rate/ step size, Normal relative optimization (Normal Representation, Decision bour (Gradient Descent), resall classification using logistication.	ization. ariable Regression Model Optimization: malization/ Feature mal Equation). idary, Cost function, c regression),	08 Hrs
Linear Regression: Polynomia (Representation of hypothesis, Gradient descent algorithm (L Scaling).Model Optimization: No Logistic Regression: Hypothesis Logistic Regression: Optimization	rithm) and non-iterative optimal Regression and Multi-values cost function, Optimization). Nearning rate/ step size, Normal Representation, Decision bourn (Gradient Descent), rsall classification using logistics or thm-Support Vector Machellation lodelling data and validating leschods to overcome over fitting	ization. ariable Regression Model Optimization: malization/ Feature mal Equation). idary, Cost function, c regression), ine (SVM) on matrix, Precision, arning, Over fitting,	08 Hrs
Linear Regression: Polynomia (Representation of hypothesis, Gradient descent algorithm (L Scaling). Model Optimization: No Logistic Regression: Hypothesis Logistic Regression: Optimization Multi-class classification (One-v Classical supervised learning alg Chapter No. 3 Performance Eva Performance Evaluation of learn Recall, F1 Score, RoC curves), M Trade of Bias and Variance, Met Regularization)	rithm) and non-iterative optimal Regression and Multi-values cost function, Optimization). Note arning rate/step size, Normal Representation, Decision bourn (Gradient Descent), asall classification using logistic gorithm-Support Vector Machelluation ning models: Metrics (Confusion lodelling data and validating lesthods to overcome over fitting Unit - II	ization. ariable Regression Model Optimization: malization/ Feature mal Equation). idary, Cost function, c regression), ine (SVM) on matrix, Precision, arning, Over fitting,	
Linear Regression: Polynomia (Representation of hypothesis, Gradient descent algorithm (L Scaling). Model Optimization: No Logistic Regression: Hypothesis Logistic Regression: Optimization Multi-class classification (One-v Classical supervised learning alg Chapter No. 3 Performance Eva Performance Evaluation of learn Recall, F1 Score, RoC curves), M Trade of Bias and Variance, Met Regularization)	rithm) and non-iterative optimal Regression and Multi-values cost function, Optimization). Note arning rate/step size, Normal Representation, Decision bourn (Gradient Descent), asall classification using logistic gorithm-Support Vector Machelluation ning models: Metrics (Confusion Index and validating lesthods to overcome over fitting means Clustering, Algorithm optivation, Definition, Methods ction: PCA- Principal Componer	ration. ariable Regression Model Optimization: malization/ Feature mal Equation). dary, Cost function, c regression), ine (SVM) on matrix, Precision, arning, Over fitting, (Feature reduction, of Dimensionality of Analysis	

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

representation: Neural Network Architecture (Activation units, Layers), Neural Network: Initialization, Forwards propagation, and Cost function, Back propagation algorithm, Multi-class classification, Steps to train a neural network,	10 Hrs
Applications of Neural Networks,	
Introduction to Deep Learning (Motivation, Overview), Convolution	
Neural Networks (CNN) (Architecture, terminologies, Evolution and Modelling)	
Unit - II	
Chapter No. 6 Deep learning algorithms	
Recurrent Neural Networks (RNN), Self-supervised models (Auto encoders and variants), Generative Models (GAN, its variants and applications)	05 Hrs
Chapter No. 7 Sequence to Sequence Learning: Attention networks, Transformer based architecture, Transformer for Time-Series	05 Hrs
Text Books:	
1. Tom Mitchell, Machine Learning, 1, McGraw-Hill, 1997 Christopher Bishop Recognition and Machine Learning, 1, Springer, 2007	, Patteri
References	
1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical	Learning
Data Mining Inference and Prediction, 2, Springer, 2009	

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG		Semester: V
Course Title: Machines lab		Course Code: 19EEEP301
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Laboratory Hours: 28 Examination Duration: 2 Hrs		
	·	

Expt. No. 1 Star and Delta Connection of Lamps

Expt. No. 2 Open circuit characteristics of DC machine

Expt. No. 3 Speed control of separately excited DC motor by armature voltage control and flux control

Expt. No. 4 Synchronization of Alternator with Bus bar/ Parallel operation of Alternator

Exercise Experiments

Expt. No.1 To Conduct NO – LOAD & BLOCKED ROTOR test on a given Induction motor to a) Find the performance parameters b) Represent the motor by its equivalent circuit model referred to Stator or Rotor.

Expt. No. 2 To Conduct Open Circuit and Short Circuit test on given single phase transformer to a) Calculate efficiency and voltage regulation at different loads & power factors. b) Draw the transformer equivalent circuit model.

Expt. No. 3 Load test on 3Ø Induction motor

Expt. No. 4 Three phase Transformer bank using three single phase transformers with different configurations of primary and secondary windings.

Expt. No. 5 Speed control of Induction motor by V/f method

Expt. No. 6 Performance study of synchronous motor with change in its excitation (V and Inverted V curves)

Expt. No. 7 Voltage regulation of an Alternator by EMF and MMF method

Structured Enquiry

Expt. No. 1 To develop the second order response surface methodology (RSM) based speed prediction model of DC shunt motor by conducting experiments as per Design of Experiments.(DOE)

Back

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Cours	e wise	Year:2023-27

Program: UG		Semester: V	
Course Title: Data Acquisition and Controls Lab		Course Code: 23EEEP302	
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Laboratory Hours: 28	Examination Duration: 2 Hrs		
	Demonstration Experiments		
Expt. No. 1. Demonstration	of Basic Op-amp Circuits [Voltage	Follower, Inverting and Non-	
inverting Op-amp]			
	Exercise Experiments		
Expt. No. 1. Design and imp	lementation of Rectifier Circuits (hal	f wave and full wave rectifier)	
Expt. No. 2. Design and im	plementation of Wave shaping circ	cuits (clippers and clampers)	
(Clampers- in PSPICE/any s	imulation tool)		
Expt. No. 3. Design and imp	Expt. No. 3. Design and implementation of Filter circuits (Low Pass Filter and High Pass Filter)		
Expt. No. 4. Design and implementation of waveform generating circuits (Schmitt trigger and			
Zero Crossing Detector)			
Expt. No. 5. Design and sim	iulation of Data converter circuits (F	R-2R D-A Converter using op-	
amp in PSPICE/any simulati	ion tool)		
Expt. No. 6. Design and ana	Expt. No. 6. Design and analyze time response specifications of second order system		
Expt. No. 7. Design and analyze frequency response specifications of second order system			
Expt. No. 8. Design and analyze Lag and Lead Compensators			
	Structured Enquiry		
Expt. No. 1 Simulate and Investigate the effect of P, PI, PID controllers on the time response			

of a given second order series RLC system. (MATLAB/using any simulation tool)

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: UG		Semester: V	
Course Title: Linear Algebra and Statistics Course Code: 15EN		1AB302	
L-T-P: 3-0-0	Credits: 3	Contact Hrs:3 Hrs/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hours		
	Unit – I		
Chapter No. 1 Matrices and Line	ear Equations: Introduction, G	Geometry of Linear	06 Hrs
equations, Elementary operatio	ns, Systems in Echelon forr	n, pivot and free	001113
variables, Gauss elimination, App	lication to electrical circuits		
Chapter No. 2 Vector spaces:			
Vector Spaces and Subspaces, S	_		05 Hrs
vectors, spanning set, Linear inde	pendence, Basis and Dimensi	ons, Column space,	05 1113
Row space and Null space			
Chapter No. 3 Orthogonalality:			04 Hrs
Eigenvalues and Eigenvectors, Diagonalzing matrices			
	Unit - II		
Chapter No. 4 Regression			
Introduction to method of least squares, fitting of curves: $y = a + bx$, $y = a + bx$			05 Hrs
$bx + cx^2$,			
$y = ab^x$, correlation and regression. Engineering problems			
Chapter No. 5 Probability			
Definition of probability, condition	• • • •	· · · ·	10 Hrs
proof), Discrete and Continuo		•	
Distributions: Binomial, Poisson, E	•	ems only)	
Unit - III			
Chapter No. 6 Random Process			
(a) Introduction to Joint Probability Distributions, marginal distribution, joint pdf			
and cdf, mean, variance, covariance, correlation.			
(b) Introduction to Random pro	• •	·	10 Hrs
covariance function, autocorrela		•	
Density: properties of the spectral	density; Gaussian Process: Pro	perties of Gaussian	
process.			

Text Books:

- 1. Gilbert Strang, Linear Algebra and its Applications, 4ed, Thomson India Edition, 2007.
- 2. David C Lay, Linear Algebra and its Applications, 3ed, Pearson India, 2009
- **3.** Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 9ed, Sultan Chand & Sons, New Delhi, 2002

Reference Books:

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise			Year:2023-27

- 1. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.
- 2. Schaum's Outline of Linear Algebra Seymour Lipschutz, Marc Lipson 4ed, McGraw Hill India 2009.

<u>Back</u>

Program: UG		Semester: V	
Course Title: Arithmetical Thinking and Analytical		Course Code: 23EHSA303	
Reasoning		Course code. 25Lii3A303	
L-T-P-: 0-0-0	Credits: 0	Contact Hrs: 2Hrs/week	
ISA Marks: 100	ESA Marks: 0	Total Marks: 100	
Teaching Hrs: 16	Exam Duration: N.A.		1
	Content		Hrs
Chapter No. 1. Analytical Thinking Importance of Sense of Analysis for Engineers, Corporate Methodology of Testing Sense of Analysis, Puzzles for practice: Analytical, Mathematical, Classification Puzzles, Teamwork in Problem Solving			04 Hrs
Chapter No. 2. Mathematical Thinking I Problems on Finance: Percentages, Gain and Loss, Interest; Distribution and Efficiency Problems: Averages, Time Work, Permutations Combinations			04 Hrs
Chapter No. 3. Mathematical Thinking II Distribution Problems: Permutations Combinations			02 Hrs
Chapter No. 4. Verbal Ability Comprehension of Passages, Error Detection and Correction Exercises, Common Verbal Ability questions from Corporate Recruitment Tests			06 Hrs
Reference Books:			
1. George J Summers, "The Great Book of Puzzles & Teasers", Jaico Publishing House,1989			
2. Shakuntala Devi, "Puzzles to Puzzle You", Orient Paper Backs, New Delhi, 1976			
3. R. S. Aggarwal, "A Modern Approach to Logical Reasoning", Sultan Chand and Sons, New Delhi, 2018			
4. M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018			
5. Cambridge Advanced Le6. Kaplan's GRE guide	arner's Dictionary, Cambridge	e University Press.	

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

VI Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Sem: VI		
Course Title: Automotive Electronics Course Code: 24E		Course Code: 24EEEC304	e Code: 24EEEC304	
L-T-P:2-0-1	Credits: 3	Contact Hours: 4 Hrs/Wee	k	
ISA Marks: 67	ESA Marks: 33	Total Marks: 100		
Teaching Hours: 24	Lab Hours: 48	Exam Duration: 2 Hrs		
	Unit - I			
Chapter No: 1. Automotive fundamentals and industry overview Introduction to automotive electronics, Vehicle functional domains, ECU design cycle: Model Base Design (MBD), V and Agile.			02 Hrs	
Chapter No: 2. Automotive C	ontrol Systems Design			
Vehicle safety and stability s	systems, sensors and actu	uators, powertrain control	03 Hrs	
systems, vehicle dynamics co	•	ıs		
Chapter No: 3. Fundamentals Drive cycles, EV drive train, EV		ement system	02 Hrs	
	Unit - II			
Chapter No: 4. Automotive of	•	CAN CAN ED Automotivo	04 Hrs	
Overview of Automotive con Ethernet, LIN, Flex Ray, MOST	•	AN, CAN FD, Automotive	U4 HIS	
Chapter No: 5. Introduction to ADAS/AD				
Advanced Driver Assistance Systems (ADAS), Autonomous driving: sensing,			03 Hrs	
planning and control, connected vehicles.			05 1115	
Unit - III				
Chapter No: 6. Functional Safety Standards				
Functional Safety: Need for	safety standard-ISO 2626	62, safety concept, safety	03 Hrs	
process for product life cycle.				
Chapter No: 7. Vehicle Diagn	ostics			
Introduction to vehicle diag tools, diagnostic fault codes,		· •	03 Hrs	
coult, analysis ratio ratio	Experiments List			
	•			
 Modeling and simulation of Electrical/Mechanical subsystems 				
 Modeling and simulation of a vehicle motion 				
 Modeling and simulation of Control Algorithms and their realization on Target platform 			48 Hrs	
Power train: ElectricFuel injection Confident	ronic Gas-pedal System (E0 trol System	GAS)		

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

- ABS/TCS/ESP
- Seat-belt/Wiper Control
- Electric vehicle (EV) power train
- State of charge (SoC) of an electric vehicle (EV)
- Model Batteries and Develop BMS
- CAN bus communication for ECU networking
- Embedded C code for CAN cluster development. (Event based transmission)
- CAN node prioritization
- CAN bus acceptance filter
- CAN/CAN-FD bus Communication on start-up, event based, Periodic and Signal handling
 - Transmission on power up
 - Event Message Transmission
 - Periodic Message Transmission
 - Conditionally Periodic Message Transmission
 - CAN signal Handling during transmission
 - Working with timers
 - CAN signal accessing with and without Data Bus Code (DBC)
 - Signal interpretation by logic (eg., ignition on engine run)
 - DBC creation
- ECU simulation in CAN using CANoe (CAPL programming)
- Diagnostic data using UDS protocol
- Stored Data Transmission Services
- Diagnostics P-Code and Fault Codes

Text Books:

- 1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003
- 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004
- 3. Konrad Reif Ed , Brakes, Brake Control and Driver Assistance Systems, Professional Automotive Information, Springer, 2014
- 4. David Smith, Kenneth Simpson, The Safety Critical Systems Handbook, 5th Edition, 2020

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Reference Books:

- 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- 2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000
- 3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001
- 4. Nicholas Navet , Automotive Embedded System Handbook , 2009

Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG	Semester : VI		
Course Title: CMOS VLSI Circuits	Course Code: 23EEEC304		
L-T-P: 3-0-0	Credits: 3 Contact Hrs: 3Hrs/Week		Neek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 Hrs		
	Unit – I		
Chapter No. 1. Introduction to VLS	SI and IC fabrication techn	ology	
VLSI Design Flow, Semiconductor T	echnology - An Overview,	Zochralski method	
of growing Silicon, Introduction	to Unit Processes (Ox	idation, Diffusion,	06 Hrs
Deposition, Ion-implantation), Basi	c CMOS technology - Silic	on gate process, n-	
Well process, p-Well process, Twin-	-tub Process, Oxide isolatio	n.	
Chapter No. 2. Electronic Analysis	of CMOS logic gates		
DC transfer characteristics of CMOS inverter, Beta Ratio Effects, Noise Margin,			
Transient Analysis of CMOS Inverter, NAND gate, Switch-level RC Delay Models,			12 Hrs
Delay Estimation, Elmore Delay N	Model, Power Dissipation	of CMOS Inverter,	
Transmission Gates & Pass Transist	ors, Tristate Inverter.		
	Unit – II		
Chapter No. 3. Design of CMOS log	ric gates		
Stick Diagrams, Euler Path, Layout design rules, DRC, Circuit extraction, Latch up			06 Hrs
- Triggering Prevention.			
Chapter No. 4. Designing Combina			
Gate Delays, Pseudo nMOS, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual-			08 Hrs
rail Logic Networks: CVSL, CPL.			
Unit - III			
Chapter No. 5. Sequential CMOS C	•	_	
Sequencing methods, Max-Delay Constraints, Min- Delay Constraints,			08 Hrs
Conventional CMOS latches, Conve			, , , , , ,
clock (TSPC) Latches and Flip – flop	s ,Clock generation and Clo	ock distribution	

Text Books:

- 1. John P. Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- 2. Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 3, Pearson Ed, 2005
- 3. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3, Tata McGra, 2007

Reference Books:

- 1. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005
- 2. Douglas A. Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI, 2005
- 3. Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford University, 2002

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Sem: VI	
Course Title: Power System Modelling, Operation & Control		Course Code: 25EEEC303	
		Contact Hrs: 4 Hrs/Week	
ISA: 67	ESA: 33	Total Marks: 100	
Teaching Hrs: 24	Lab Hrs: 24	Exam Duration: 2Hrs	
	Unit – I		
Chapter No. 1. Formation	of Network Matrices		
Multi-port power system representation, performance equations in bus frame of reference, definitions of Network models Ybus and Zbus, Primitive element representations, primitive performance equations,. Formation of Ybus by method of Inspection, Introduction to graph theory- definitions of terms, Bus incidence matrix, Ybus by the method of singular transformation, Examples on Ybus formation by singular transformation (with no mutual coupling) and Inspection method, Zbus building algorithm-addition of uncoupled branches and links, modification of Zbus for changes in elements not mutually coupled, Examples on Zbus formation			06hrs
Chapter No. 2. Optimal Load Dispatch Importance and objective of economic load dispatch, Fuel cost and Incremental fuel cost, Optimal load allocation between plants neglecting transmission losses, Examples on optimal load allocation with and without generation constraints, Optimal load allocation considering transmission losses, General transmission loss formula, Examples.			06 hrs
Unit – II			
Chapter No. 3. Load Flow Analysis Importance of Power flow, Classification of busses, General steps in load flow analysis, Offnominal ratio tap changing ratio transformer representation. Bus voltage solution by Gauss and Gauss-Seidel methods without PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples on one iteration of load flow solution.			06 hrs
Chapter No. 4. Load frequency control Introduction to load frequency control problem, Working principle of speed governor, Model of isolated power system area —block diagram representation, Expression for steady-state frequency deviation, Parallel operation of generators —expression for operating frequency and load sharing,, two area load frequency control, steady-state operation of multi-area system under free governor operation, Examples on load sharing between areas. Lab Experiments to be conducted			06 hrs
Lab Experiments to be conducted			
1. Formation Ybus by singular transformation			02 Hrs
2. To form Ybus by the method of inspection		02 Hrs	
3. Solution of load flow p	3. Solution of load flow problem using Gauss-Seidel method		

4. Solution of load flow problem using Newton-Raphson method.		
5. Economic load dispatch without considering network losses	02 Hrs	
6. Economic load dispatch considering network losses	02 Hrs	
7. ABCD Line parameters and line performance	02 Hrs	
8. Solution of swing equation		
9. Load frequency control problem		
Structured Enquiry		
1.Develop and Analyze power system solution using GUI based power system software		
package/develop programs, carry out simulations of a specified problem of a large- scale interconnected power system, interpret the results of the simulation, draw practical conclusions from them and prepare a technical report		

Text Books:

- 1. Stagg and El-Abid, Computer Methods in power system analysis, First, Mc-Graw Hill, 1968
- 2. Kothari and Nagarath, Modern Power System Analysis, 3, TMH, 2004

Reference Books:

- 1. P Kundur, Power system stability and control, 1st ed, TMH, 2007
- 2. Hadi Sadat, Power system analysis, 1st ed, TMH, 2002
- 3. A.R. Bergen and Vijay Vittal, Power System Analysis, First, Pearson Education, 2009 Joe H. Chow, Juan J. Sanchez-Gasca, Power System Modelling, Computation

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG		Semester: VI
Course Title: CMOS VLSI Circuits Laboratory		Course Code: 23EEEP304
L-T-P-0-0-1 Credits: 1		Contact Hours:2Hrs/week
ISA: 80	ESA: 20	Total Marks :100
Laboratory Hours: 24 ExamDuration:2Hrs		
Demonstration Experiment		

Expt No.1 Introduction to Cadence EDA tool.

Exercise Experiments

Expt No.2 MOSFET Device characteristic.

Expt No.3 Static and Dynamic Characteristic of CMOS inverter.

Expt No.4. Static and Dynamic Characteristic of CMOS NAND2 and NOR2.

Expt No.5. Layout of CMOS Inverter (DRC,LVS)

Expt No.6. Layout of NAND2, NOR2, XOR2 gates (DRC, LVS).

Structured Enquiry

1. AOI, OAI circuits and analyze the performance with optimized layout using Cadence tool.

Open Ended Experiments

1. Design complex combinational circuits and analyze the performance using Cadence tool.

Text Books:

- 1. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley.
- 2. Neil Weste and K. Eshragian,"Principles of CMOS VLSI Design: A System Perspective," 2nd edition, Pearson Education (Asia) Ptv. Ltd., 2000

Back

Document #: FMCD2005

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Course Title: Industry Readiness & Leadership Skills L-T-P: 0-0-0 Credits: 0 Contact Hrs: 2Hrs /week ISA Marks: 100 ESA Marks: 0 Total Marks: 100 Exam Duration: N.A. Content Content Chapter No. 1. Written Communication Successful Job Applications, Résumé Writing, Emails, Letters, Business Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Program: UG		Semester: VI	
ISA Marks: 100 Teaching Hrs: 16 Content Content Chapter No. 1. Written Communication Successful Job Applications, Résumé Writing, Emails, Letters, Business Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Course Title: Industry Readiness & Leadership Skills Course Code: 23EHSA30		Course Code: 23EHSA304	
Teaching Hrs: 16 Content Chapter No. 1. Written Communication Successful Job Applications, Résumé Writing, Emails, Letters, Business Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	L-T-P: 0-0-0 Credits: 0 Contact Hrs: 2Hrs		Contact Hrs: 2Hrs /week	
Content Chapter No. 1. Written Communication Successful Job Applications, Résumé Writing, Emails, Letters, Business O6 Hrs Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	ISA Marks: 100	ESA Marks: 0	Total Marks: 100	
Chapter No. 1. Written Communication Successful Job Applications, Résumé Writing, Emails, Letters, Business O6 Hrs Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Teaching Hrs: 16		Exam Duration: N.A.	
Successful Job Applications, Résumé Writing, Emails, Letters, Business Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities		Content		Hours
Communication, Essay, and Paragraph Writing for Recruitment Tests Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Chapter No. 1. Written Commi	unication		
Chapter No. 2. Interview Handling Skills Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Successful Job Applications,	Résumé Writing, Er	mails, Letters, Business	06 Hrs
Understanding Interviewer Psychology, Common Questions in HR Interviews, Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Communication, Essay, and Paragraph Writing for Recruitment Tests			
Grooming, Interview Etiquette Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Chapter No. 2. Interview Handling Skills			
Chapter No. 3. Lateral & Creative Thinking Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind Maps, Creativity Enhancement through Activities	Understanding Interviewer Psychology, Common Questions in HR Interviews,		04 Hrs	
Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind O4 Hrs Maps, Creativity Enhancement through Activities	Grooming, Interview Etiquette			
Maps, Creativity Enhancement through Activities	Chapter No. 3. Lateral & Creative Thinking			
	Lateral Thinking by Edward de Bono, Fractionation and Brain Storming, Mind			04 Hrs
	Maps, Creativity Enhancement through Activities			
Chapter No. 4. Team Building & Leadership Skills	Chapter No. 4. Team Building & Leadership Skills			
Communication in a Team, Leadership Styles, Playing a Team member, Belbin's 02 Hrs	02 Hrs			
team roles, Ethics, Effective Leadership Strategies				

Reference Books:

- 1. Diana Booher E Writing, Laxmi Publications
- 2. Edward de Bono-Lateral Thinking A Textbook of Creativity, Penguin UK
- 3. William Strunk, E B White The Elements of Style, Pearson
- 4. John Maxwell The 17 Essential Qualities of a Team Player, Harper Collins Leadership
- 5. Robin Ryan 60 Seconds and You're Hired! Penguin Books

Back

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: UG		Semester: VI	
Course Title: Professional Aptitude and Logical Reasoning		Course Code: 16EHSC301	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 Hrs		
Unit –I - Arithmetical Reasoning and Analytical Thinking			
Chapter No. 1. – Arithmetical Reasoning			10 Hrs
Chapter No. 2. – Analytical Thinking		04 Hrs	
Chapter No. 3. – Syllogistic Logic		03 Hrs	
Unit – II –	Verbal and Non – Verbal	Logic	
Chapter No. 1. – Verbal Logic			09 Hrs
Chapter No. 2. – Non-Verbal Logic		06 Hrs	
Uni	t – III - Lateral Thinking		
Chapter No. 1 Lateral Thinking			08 Hrs

Text Books:

- **1.** A Modern Approach to Verbal and Non Verbal Reasoning R. S. Aggarwal, Sultan Chand and Sons, New Delhi
- 2. Quantitative Aptitude R. S. Aggarwal, Sultan Chand and Sons, New Delhi

Reference Books:

- 1. Verbal and Non Verbal Reasoning Dr. Ravi Chopra, MacMillan India
- 2. Lateral Thinking Dr. Edward De Bono, Penguin Books, New Delhi

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

VII Semester Bachelor of Engineering (Electrical & Electronics Engineering)

Program: UG		Sem: VII	
Course Title: Power System Protection		Course Code:26EEEC401	
L-T-P: 1-0-1 Credits: 2 Contact Hrs: 3 Hrs/Week			
ISA: 50	ESA: 50	Total Marks: 100	
Teaching Hrs: 16	Lab Hrs:14	Exam Duration: 2 Hrs	
r dudining i ii di	Unit – I		
Chapter No. 01: Introduction to Switch Gear & Protection Need for protective schemes, Nature and Cause of Faults, Types of Fault, Effects of Faults, Fault Statistics, Zones of Protection, Primary and Backup Protection, Essential Qualities of Protection, Performance of Protective Relaying, Classification of Protective Relays, Automatic Reclosing, Current Transformers for protection, Voltage Transformers for Protection Fuse: Introductions, Definitions, Fuse Characteristics, Types of Fuses, Applications of HRC Fuses, Selection of Fuses, Discrimination			8 hrs
Chapter No. 02: Relay			8 hrs
Introduction, Electromechanical Relays, Static Relays, Numerical Relays & Microprocessor -based Protective Relays. Overcurrent Protection Introduction, Time — current Characteristics, Current Setting, Time Setting. Overcurrent Protective Schemes, Reverse Power or Directional Relay, Protection of Parallel Feeders, Protection of Ring Mains, Earth Fault and Phase Fault Protective Scheme, Phase Fault Protective Scheme, Directional Earth Fault Relay.			
	Expt. No.1: Introduction Sessi	on	
Expt. No.2: To obtain the inverse time characteristics of a given fuse wire and wires of different lengths.			
Expt. No.3: To obtain the inverse time characteristics of an electromagnetic over current relatives			-
Expt. No.4: To obtain the operating characteristics of microprocessor based differential relay.Expt. No.5: To obtain the operating characteristics of microprocessor based directional over current relay.			ay.
Expt. No.6: To obtain the breakdown strength of air using Copper sphere gap with HVAC and HVDC.			
Expt. No.7: a) To obtain the breakdown strength of air using different pairs of electrode gap with HVAC and HVDC. b) To obtain the breakdown voltage of a solid dielectric. c) To obtain the breakdown voltage of a liquid dielectric. Structured Enquiry To develop microcontroller based overcurrent, over voltage and impedance relay using			gap
CT /PT giving details of program and demonstrate it's working output. Text Books:			

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

1. Switch Gear & Protection by Sunil S. Rao, Khanna Publication.

Reference Books:

- 1. Fundamental of Power System Protection by Y.G. Painthankar & S.R. Bhide PHI Publication.
- 2. Power System Protection & Switch Gear by Badriram & Vishwa Karma TMH

<u>Back</u>

FORM ISO) 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: UG	Semester : VII	Semester : VII		
Course Title: CIPE & EVS	Course Code: 15EHSC4	Course Code: 15EHSC402		
L-T-P: 2-0-0	Credits: Audit	Credits: Audit Contact Hrs: 2Hrs/Week		
ISA Marks: 50	rks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 30	Exam Duration: 3 Hrs	Exam Duration: 3 Hrs		
Unit – I				

Chapter No. 1 Features of Indian Constitution : Features of Indian Constitution, Preamble to the constitution of India, Fundamental rights under Part III – details of Exercise of rights, Limitations & Important cases. Berubari Union and Exchange of Enclaves, Kesavan and Bharati vs. UOI, Maneka Gandhi vs. UOI, Air India Ltd. vs. NargeesMeerza, T.M.A. Pai Foundation v. St. of Karnataka, M.C. Mehta vs. UOI etc.,

Chapter No. 2 Relevance of Directive principles of State Policy: Relevance of Directive principles of State Policy under Part IV, Fundamental duties & their significance. SarlaMudgal v. UOI

Chapter No. 3 Union : Union – President, Vice President, Union Council of Ministers, Prime Minister, Parliament & the Supreme Court of India.

Chapter No.4 State: State – Governors, State Council of Ministers, Chief Minister, State Legislature and Judiciary.

Chapter No. 5 Constitutional Provisions for Scheduled Castes & Tribes : Constitutional Provisions for Scheduled Castes & Tribes, Women & Children & Backward classes, Emergency Provisions.

Chapter No. 6 Electoral process : Electoral process, Amendment procedure, 42nd, 44th and 86th Constitutional amendments.

Unit - II

Chapter No. 7 Scope & Aims of Engineering Ethics: Scope & Aims of Engineering Ethics: Meaning and purpose of Engineering Ethics, Responsibility of Engineers, Impediments to responsibility, Honesty, Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas Tragedy, Titanic case.

Chapter No. 8 Intellectual Property Rights : Intellectual Property Rights (IPRs)- Patents, Copyright and Designs

Chapter No. 9 Ethical perspectives of professional bodies : Ethical perspectives of professional bodies- IEEE, ASME, NSPE and ABET, ASCE etc

Unit - III

Chapter No. 10 Effects of human activities on environment

Effects of human activities on environment - Agriculture, Housing, Industry, Mining, and Transportation activities, Environmental Impact Assessment, Sustainability and Sustainable Development.

Chapter No. 11 Environmental Protection Environmental Protection — Constitutional Provisions and Environmental Laws in India

Text Books:

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005

- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publications, Allahabad, 2010.
- 3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003

Reference Books:

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program Electives

Program: Electrical & Electronics Engineering		Sem: VI
Course Title: Electric Vehicular Technology		Course Code: 24EEEE301
L-T-P: 1-0-2 Credits: 3		Contact Hrs: 5 Hrs/Week
ISA: 67 ESA: 33		Total Marks: 100
Teaching Hrs: 27 Lab Hrs: 43		Exam Duration: 2Hrs

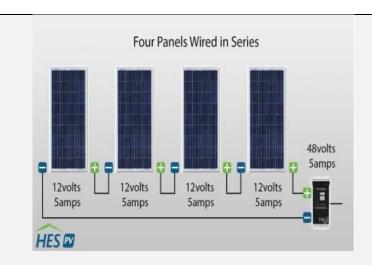
Unit-I	Hrs
Chapter No. 1. Introduction to Electric Vehicles	
History of Electric Vehicles, Types of EVs: Battery Electric Vehicles (BEVs), Plug-in Hybrid	02 Hrs
Electric Vehicles (PHEVs), and Hybrid Electric Vehicles (HEVs), Advantages and Challenges	UZ 1113
of EVs.	
Chapter No. 2. EV Components and Architecture	
EV Architecture, Electric Vehicle Motors, Batteries: Types, Lithium-ion, Solid-State, and	05 Hrs
Capacities, Converters, and Controllers, Charging Infrastructure: Onboard Chargers,	051113
Offboard Chargers, and Charging Standards	
Chapter No. 3. Batteries and Energy Storage Systems	
Battery Design and Manufacturing Process, Energy Density, Cycle Life, and Charging	05 Hrs
Efficiency, Battery Management Systems (BMS), State estimations, Battery Recycling.	
Unit-II	
Chapter No. 4. Charging Systems and Infrastructure	
Types of EV Chargers (Level 1, Level 2, and DC Fast Charging), Charging Standards and	05 Hrs
Protocols (CHAdeMO, CCS, Tesla Superchargers) Wireless Charging Systems, Smart	051113
Charging and Grid Integration, Infrastructure Development and Urban Planning for EVs.	
Chapter No. 5. Electric Motors and Powertrain Technology	
Principles of Electric Motors, Types of Electric Motors Used in EVs, EV transmission	05 Hrs
Systems, Regenerative Braking Systems, Thermal Management in Powertrains.	
Chapter No. 6. Control Systems and Power Electronics in Electric Vehicles	
Power Electronics Overview, Vehicle Control Units (VCUs), Software and Communication	05 Hrs
Protocols (CAN Bus, IoT in EVs), Role of AI and ML in EV optimization, Introduction to	05 1113
autonomous EV technology.	

Text Books (List of books as mentioned in the approved syllabus):

- 1. Electric Vehicle Technology Explained by James Larminie and John Lowry, A John Wiley & Sons, Ltd., Publication, 2nd Edition, 2012.
- **2.** Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Husain, 3rd Edition, CRC Press, Taylor and Francis Group, 2021

References:

1. Modern Electric, Hybrid Electric, and Fuel Cells Vehicles, Fundamentals, Theory and Design, 2nd Edition, Mehrdad Ehsani, Yimin Gao, Ali Emadi, CRC Press, Taylor and Francis Group, 2018


Back

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: Electrical & Electr	onics Engineering	Semester: VI	
Course Title: Modelling & Analysis of Hybrid Electrical		Course Code: 24EEEE30	2
Energy Systems			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4Hrs/Week	
ISA: 67	ESA: 33	Total Marks: 100	
Teaching Hrs: 24	Lab Hrs: 24		
	Unit-I		
Chapter No. 1. Introduction	n to PV Systems		
Introduction to PV Systems,	Cell module and Panel, Irradiar	nce Modeling, Series and	
	eristic curves, Classification of		06 hrs
Sizing, Feasibility of Photo v	oltaic Systems, Maintenance o	f Photo voltaic Systems,	
PV array modelling			
Chapter No. 2. Introduction			
	fication. Global Structure o		
•	ns, Control Techniques, Wind p		
	, Standalone with/ without s		06 hrs
_	ne, Maintenance of Wind Syste		
Turbine Installation, Onshore and Offshore, Wind distribution models, Wind			
generators, Fixed speed/ variable speed SCRIG, DSIM, DFIG			
Unit-II			
Chapter No. 3. Optimization			
·	n of PV systems, Maximum po	•	
_	im, Incremental conductance		06 hrs
	ithms for WECS, P&O Techn	• • •	
Method, Power Signal Fe		mparison of Different	
Algorithms PV/ WECS MPPT		un inquine	
	gy Systems and Grid integration brid Energy Systems, Need		
•	stems, Combination of PV/ \	•	06 hrs
		-	00 1113
Hybrid systems Grid Issues in integrating renewable energy systems, Types of Grid integration issues, Issues Related to Grid Integration of Small Scale Generation			
Course Project(30 marks)			
Phase 1 (10 Marks): Model using any suitable simulation software like MATLAB/			
PYTHON/ any suitable. Design four panels of 12V 5 Amp each and connects them			
in series and parallel as shown. Simulate and verify the operation at various			
insolation levels.			

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Case 1: Refer input irradiance table, Temp at 250 constant

Time	Irradianc	Time	Irradianc
	e in		e in
	W/m2		W/m2
7am	0	12.30	1000
		pm	
7.30	100	1 pm	900
am			
8 am	200	1.30	800
		pm	
8.30	300	2 pm	700
am			
9 am	400	2.30	600
		pm	
9.30	500	3 pm	500
am			
10 am	600	3.30	400
		pm	
10.30	700	4 pm	300
am			
11 am	800	4.30	200
		pm	
11.30	900	5 pm	100
am			
12 am	1000	5.30	0
		pm	

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Case 2: Constant irradiance as 1000 W/m2, Variable Temperature as 00,200, 400, 500 and 600

Phase II (10 Marks): For the PV panel given in the table. Design and select a suitable converter and generate necessary plots and waveforms

Table 2.1 Parameter of the PV panel Siemens SM110-24 [31]

Parameter	Value
$P_{\rm mpp}$	110 W
I_{mpp}	3.15 A
V_{mpp}	35 V
	3.45 A
I_{sc} V_{oc}	43.5 V
α_{sc}	1.4 mA/°C
β_{oc}	−152 mV/°C

Phase III (10 Marks): Select suitable MPPT algorithm (PERTURB & OBSERVE MPPT ALGORITHM). Compare the output with and without MPPT algorithm. And draw necessary waveforms

 Submit a detailed report not less than eight pages, include program/ simulation and all necessary waveforms.

Compare Efficiency with and without MPPT algorithm in a table

Text Books:

- Djamila Rekioua Ernest Matagne, Optimization of Photovoltaic Power Systems Modeling, Simulation and Control, Green Energy and Technology, Springer, 2014
- 2. Djamila Rekioua Ernest Matagne, Wind Power Electric Systems- Modeling, Simulation and Control, Green Energy and Technology, Springer, 2014
- 3. S. Sumathi ,L. Ashok Kumar , P. Surekha , Solar PV and Wind Energy Conversion Systems -An Introduction to Theory, Modeling with MATLAB/SIMULINK, Green Energy and Technology, Springer, 2014

Reference Books:

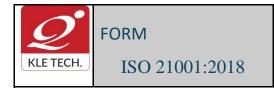
1. Gilbert M Masters, Renewable and Efficient Electric Power Systems, Wiley Interscience, New Jersey, 2004

Q	FORM
KLE TECH.	ISO 21001:2018

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Ele	ctronics Engineering	Semester: VI	
Course Title: Object Orie	nted Programming using C++	Course Code: 24EEE	E305
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/Week	
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hours: 24	Lab Hrs:16	Exam Duration: 02	Hrs
	Unit - I		
Chapter No. 1: Fundame	ntal concepts of object-oriented prog	ramming:	
Introduction to object-or	iented programming, Programming Ba	sics, Arrays and	06 Hrs
Strings, Functions/ method	ods (parameter passing techniques).		
Chapter No. 2: Classes ar	nd Objects:		
Introduction to classes	& objects, Scope resolution operat	or, Data Members,	
Defining Member Func	tions, Encapsulation (Data hiding),	visibility modifiers,	12 Hrs
Constructors & Destructo	rs, Nested classes, Static data memb	ers, Inline function,	12 113
Friend class and functions	s, passing objects as arguments, UML o	liagrams to describe	
classes and relationships.			
Chapter No. 3: Inheritance:			
Introduction to inheritance, Types of Inheritance, defining derived classes, Access			
Specifiers, Base and Derived class Constructors, initialization list in the constructor,			10 Hrs
member classes, Nesting of member classes, Virtual base classes, Making a			
private member inheritable.			
Unit – II			
Chapter No. 4: Polymorp	hism		
Virtual functions, Pure Virtual functions, Abstract classes, Reference variable, static			09 Hrs
functions, The 'this' pointer, Operator overloading			
Chapter No. 5: Exception Handling:			
Introduction to exceptions, Throwing an Exception, Try Block, Exception Handler			10 Hrs
(Catching an Exception), Multiple exceptions. Exceptions with arguments. Built-in			101113
exception class hierarchy.			
-	and I/o streams: Class templates and		
C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling, Error			09 Hrs
handling during file opera	ations.		


Text Books:

- 1. Robert Lafore, Object oriented programming in C++, 4th Edition, Pearson education, 2009
- 2. Cay Horstmann, Big C++, 2nd Edition, John Wiley and sons, 2009

Reference Books:

- The Complete Reference C++, Herbert Schildt, 4th Edition, TMH, 2005.
 Farrell, "An object-oriented approach to logic and design", 4th Edition, Cingage Publishers, 2012.
- 2. Lippman S B, Lajorie J, Moo B E, C++ Primer, 4ed, Addison Wesley, 2005.

<u>Back</u>

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronics Engineering Course Title: Generative AI L-T-P: 2-0-1 ESA Marks: 33 Total Marks: 100 Teaching Hrs: 28 Lab Hrs: 28 Unit - I Chapter 1: Introduction to Generative AI Definition, Overview of Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Teaching Hrs: 28 Lab Hrs: 28 Exam Duration: 2 Hrs Unit – I Chapter 1: Introduction to Generative AI Definition, Overview of Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Teaching Hrs: 28 Lab Hrs: 28 Unit – I Chapter 1: Introduction to Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Unit – I Chapter 1: Introduction to Generative AI Definition, Overview of Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Chapter 1: Introduction to Generative AI Definition, Overview of Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Definition, Overview of Generative AI, Importance and applications of Generative AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
AI, Evolution of AI towards generative models, Key milestones and breakthroughs in Generative AI. Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Al, Evolution of Al towards generative models, Key milestones and breakthroughs in Generative Al. Chapter 2: Generative Al Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Chapter 2: Generative AI Models: Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Autoencoders (AE) and Variational Autoencoders (VAEs) Architecture: Encoder, Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Decoder, Latent Space, Training with ELBO (Evidence Lower Bound), Applications and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
and limitations. Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Generative Adversarial Networks (GANs): Architecture: Generator and Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
Discriminator, Training process, loss functions, Common issues, Variants: DCGAN, CycleGAN, StyleGAN.				
CycleGAN, StyleGAN.				
Diffusion Models: Forward process (encoders), reverse process (decoders), score				
matching, guided diffusion				
Chapter 3: Training and Evaluation of Generative AI Models:				
Optimization Methods: Gradient Descent, Stochastic Gradient Descent (SGD),				
Adam Optimizer, Adam (Adaptive Moment Estimation), RMSProp (Root Mean				
Square Propagation), Adagrad (Adaptive Gradient Algorithm), AdaDelta.				
Evaluation Metrics: Inception Score (IS), Frechet Inception Distance (FID),				
Perplexity, Reconstruction Error, Mode Score, Diversity Metrics, Wasserstein				
Distance, Earth Mover's Distance (EMD), BLEU Score, Challenges: Mode collapse,				
stability, and convergence.				
Chapter 4: Generative Models II: Autoregressive Models Definition and Principle: Autoregressive Property Conditional Dependence				
Definition and Principle: Autoregressive Property, Conditional Dependence, Autoregressive Process				
Examples of Autoregressive Models: AR Models in Time Series Analysis, Autoregressive Integrated Moving Average (ARIMA)				
oregressive integrated Moving Average (ARMMA) oregressive Models for Generative AI: (PixelCNN, WaveNet)- Overview,				
Architecture, Training, Applications				
Unit – II				
Chapter 5: Generative Models II: Transformers				
Introduction to Transformers Origins and evolution from traditional sequence				
models (like RNNs and LSTMs) to transformers, self-attention mechanism, multi-				
head attention, position-wise feedforward networks.				

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vaar:2022_27	

Transformer Architecture: breakdown of encoder and decoder stacks, Layer			
normalization and residual connections, Masked self-attention in the decoder for			
auto-regressive generation, Pre-training and Fine-tuning.			
Transformer-based Autoregressive Models: GPT (Generative Pre-trained			
Transformer), Overview, Architecture, Training, Applications, BERT (Bidirectional			
Encoder Representations from Transformers), T5 (Text-to-Text Transfer			
Transformer)			
Chapter 6: Generative Models II: Large Language Models (LLMs)			
Introduction to LLMs, Overview of Large Language Models (e.g., GPT-3, GPT-4)			
Training methodologies and scalability, Integration of LLMs in various generative			
tasks, Fine-tuning and transfer learning with LLMs, Building and deploying LLM-			
based applications.			
Chapter 7: Ethical Considerations and Responsible AI:			
Bias and fairness in generative AI models, Privacy concerns and data protection	04 Hrs		
in generative AI applications, Responsible use of generative models in society			
Tart Backs			

Text Books:

- 1. Christopher M. Bishop, Hugh Bishop, "Deep Learning Foundations and Concepts", Springer 2024, ISBN 978-3-031-45467-7, pp. 1-607.
- 2. Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada, "Applied Generative AI for Beginners: Practical Knowledge on Diffusion Models, ChatGPT, and Other LLMs", 978-1-4842-9994-4, (2023), https://doi.org/10.1007/978-1-4842-9994-4.
- 3. Martin Musiol, "Generative AI: Navigating the Course to the Artificial General Intelligence Future". John Wiley & Sons Inc; 1st edition, (2024), ISBN-13: 978-1394205912, 1-288 pages.
- Jospeh Babcock and Raghav Bali, "Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models", Packt Publishing (2021); Packt Publishing Limited, 1-488 Pages, ISBN-13: 978-1800200883

Back

Document	#:
FMCD200)5

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronics Engineering Semester: VI			
Course Title: Architectural Design of Integrated Circuits Course code		Course code: 24EEEE3	803
L-T- P: 1-0-2 Credits: 03		Contact Hrs: 05 hrs/week	
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 16 hrs	Lab Hrs: 48 hrs	Examination Duration	n:2 Hrs
Chapter No. 1. Digital Integra	ted Circuits		
Challenges in digital design, De	sign metrics, Cost of Integrated c	rcuits, ASIC, Evolution	
of SoC ASIC Flow Vs SoC Fl	ow, SoC Design Challenges. Ir	troduction to CMOS	
Technology, PMOS & NMOS (Operation, CMOS Operation pri	nciples, Characteristic	03 hrs
curves of CMOS, CMOS Inverte	er and characteristic curves, Dela	ys in inverters, Buffer	
Design, Power dissipation in CMOS, CMOS Logic, Stick diagrams and Layout diagrams.			
Setup time, Hold Time, Timing	Concepts.		
Chapter No. 2. System Building Blocks			
Modeling finite state Machir	es, Data Path and controller	design, Synthesizable	04 hrs
Verilog, Pipeline modeling			
Chapter No. 3. Design and simulation of Micro - Architectural blocks			
Efficient technique/s for Algorithm to Architecture Mapping, Recent Trends on			04 hrs
Adder/Subtractor Design, Efficient VLSI Architectures for Various DSP blocks (FIR filter,			04 1113
CORDIC, FFT), Pipeline Implementation of Processor, Verilog Modeling of Processor			
Chapter No. 4. Timing Analysis			
Fundamentals of Efficient Design and Implementation strategies of Digital VLSI Design			03 hrs
(Clock Tree synthesis, Timing C	losure, Synthesis), Static Timing	Analysis, Clock Skew	
Defended Backs			

Reference Books:

- 1. Digital Design by Morris Mano M, 4th Edition.
- 2. Verilog HDL: A Guide to Digital Design and Synthesis by Samir Palnitkar, 2nd Edition.
- 3. Principles of VLSI RTL Design: A Practical Guide by Sapan Garg, 2011.
- 4. Tools: Questa Sim, Modelsim for Verilog, Cadance Geneus, Xilinx 14.2 ISE

<u>Back</u>

Docun	nent	#:
FMCI	D200)5

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronic	s Engineering	Semester: VII	
Course Title: Battery Manageme	ent Systems	Course Code: 25EEEE403	
L-T-P: 1-0-2 Credits: 3 Contact Hrs: 5 Hrs/Week			
ISA Marks: 67 ESA Marks: 33 Total Marks: 100			
Teaching Hrs: 27	Lab Hrs: 43	Exam Duration: 2 Hrs	
	Unit – I		
Chapter No. 1. Introduction: Ov	verview of cells and Ba	tteries, Types of batteries,	02 hrs
Battery Operation, Battery Cons	truction, Battery Chemi	stry, Battery Models.	
Chapter No. 2. Battery Models:	Battery Models, Self-D	scharge Model, Equivalent	02 hrs
Circuits, Coulombic Efficiency, pa	arameter identification	using SOC/OCV.	
Chapter No. 3. BMS (Black-box a	approach): Need for BM	IS, BMS inputs and outputs	02 hrs
and functions Battery management system with an EV application			
Chapter No. 4. BMS Architectures: Monolithic, Distributed, Semi-Distributed,			03 hrs
Connection Methods, Additional Scalability, Battery Pack Architectures.			
Chapter No. 5. System Control: Contactor Control, Soft Start or Precharge Circuits,			04 hrs
Control Topologies, Contactor Opening Transients, Chatter Detection,			
Economizers, Contactor Topologies, Contactor Fault Detection.			
	Unit – II		
Chapter No. 6. Data acquisition (Measurement): Cell voltage, current and			03 hrs
temperature measurement, Synchronization of Current and Voltage.			
Chapter No. 7. Battery Management System Functionalities: CC/CV Charging			03 hrs
Method, Target Voltage Method, Constant Current Method, Thermal			
Management, and Operational N	лodes.		
Chapter No. 8. Charge Balancing (Cell balancing): Charge Balancing Strategies,			04 hrs
Balancing Optimization, Charge Transfer Balancing, Flying capacitor.			
Chapter No. 9. SoC Estimation: Columb counting, SoC corrections, OCV			
measurements, temperature cor	npensation.		

Text Books:

- 1. Phillip Weicker "A Systems Approach to Lithium-Ion Battery Management" 2013, Artech house publisher.
- 2. Gregory L. Plett "Battery Management Systems, Volume II, Equivalent-Circuit Methods" 2016.

Reference Books:

1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and Applications of Lithium-Ion Batteries in Electric Drive Vehicles", John Wiley & Sons, 2015.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vaar:2023-27	

Program: Electrical & Electronics Engin	neering	Semester : VII	
Course Title: Powertrain Control System Design Course Code: 25EEEE			402
L-T-P: 1-0-2 Credits: 3 Contact Hrs: 5 Hrs/W			Veek
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs.: 16	Lab Hrs.: 48	Exam Duration: 2 Hr	S
Unit -I			
Chapter No. 1. Transformation Theory	1		
Introduction to RLC circuit, Mathe	matical modelling of thre	ee phase VSI, DQ-	01 Hrs
transformation theory, Harmonics imp	act on transformation.		
Chapter No. 2. EV Motor Modelling			
Mathematical modelling of PMSM and	PMDC: Define motor paran	neters, Derive PMSM	03 Hrs
equations in DQ reference frame, Implement Clarke and Park transformations.			
Chapter No. 3. Control Strategies of EV			
Introduction of different control strategies, scalar control and vector control, Direct and			
indirect FOC, DTC: Define motor parameters (PMSM or BLDC), Perform Clarke and Park			04 Hrs
transformations, Measure or estimate rotor position and speed, Generate current			U4 HIS
references (id, iq), Design PI controllers for current loops, Inverse Park transformation			
to get three-phase voltages, Generate PWM signals using SVPWM or Sine PWM.			
Unit-II			
Chapter No. 4 Non-Isolated DC-DC Converters: Principle of operation, analysis of step-			
down and step-up converters, classification of PWM choppers, Analysis of two and four			04 Hrs
quadrant PWM choppers, and Sépic converters.			
Chapter No. 5 Isolated DC-DC Converters:			
Principle of operation, analysis of step-down and step-up converters, Flyback			03 Hrs
Converter, Forward Converter, Half Bridge and Full Bridge Converter.			
Chapter No. 6. Dual Active Bridge Converters:			01 Hrs
Basic principles and configurations of D	Dual Active Bridge (DAB) cor	nverters.	01 1112

Text Books (List of books as mentioned in the approved syllabus):

- 1. Ned Mohan, Advanced Electric Drives Analyses, control and Modelling using MATLAB Simulink, Johan Wiley & sons, Inc. Publications, Hoboken, New Jersey.
- 2. Sang-Hoon Kim, Electric Motor Control, November 2016.
- 3. Daniel W Hart, Power Electronics, Second Edition, Tata McGraw-Hill, 2017.
- 4. Rashid M. H, Power Electronics Circuits, Devices and Applications, 4th Edition, PHI, New Delhi, 2000.
- 5. P. S. Bhimbra, Power Electronics, 7th Edition, Khanna Publishers, 2022.
- 6. L. Umanand, Power Electronics: Essentials and Applications, 2nd Edition, Wiley-India Publications, New Delhi, 2009.

References:

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

- 1. Ned Mohan, Tore. M. Undeland and William. P Robbins, Power Electronics: Converters, Applications and Design, John Wiley and Sons, 2003.
- 2. Marian P. Kazmierkowski, R. Krishnan and Frede Blaabjerg, Control in Power Electronics, Academic Press, 2002.
- 3. Marian K. Kazimierczuk, Pulse-width Modulated DC–DC Power Converters, John Wiley & Sons
- 4. Robert W. Erickson, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2000.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: Electrical & Elect	ronics Engineering	Semester: VII	
Course Title: Smart Grid Technologies Course Code: 25EEEE401			
L-T-P: 1-0-2 Credits: 3 Contact Hrs:5 Hrs/Week			
ISA Marks: 67 ESA Marks: 33 Total Marks: 100			
Teaching Hrs: 27	Lab Hrs:43	Exam Duration: 2 Hrs	
Unit - I			
Chapter No. 1. Introduction	n to Smart grid technologies		
Challenges in Smart grids i	implementation: Communication	n challenges in smart grids,	02 hrs
Overview of the technolog	gies required for energy efficie	nt smart grids, Threat and	02 1113
Impacts			
Chapter No. 2. Communica	tion technology in smart grids		
Communication Technologi	es, Distribution Generation and	Active Control, Overview of	05 hrs
smart grid communication standards, Integration of Utility, Cyber security,			
Interoperability, Case Studies.			
Chapter No. 3. Smart Distribution systems and Energy Storage			
Smart metering, Real time pricing, Distributed Energy Resources in Smart Grids, Demand			
response, Plug in hybrid electric vehicles, Ultra capacitors, Fly wheels and Fuel cells			
Unit - II			
Chapter No. 4. Renewable Energy integration			
Introduction of Block Chain and Digital twin in Smart grid integration, Integration of			
Intelligent Electronic Devices in EMS, Substation Automation, Carbon foot printing,			
Issues of interconnection, Protection and control of Micro-grid.			
Chapter No. 5. Smart and Efficient Transmission System			
Transmission Blackouts: Risk, Causes and Mitigation and Case Studies, Phasor data			
concentrators, Energy Monitoring systems and its applications in Smart grids.			
Chapter No. 6. Strategies for the future Energy efficient Electrical Networks			
BEE standards and Energy Management System, Demand forecasting, Prediction			05 hrs
methods for secure power s	system operation, Market integr	ation of the consumers.	

Text Books:

- 1. Electric Vehicle Technology Explained by James Larminie and John Lowry, A John Wiley & Sons, Ltd., Publication, 2nd Edition, 2012.
- 2. Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Husain, 3rd Edition, CRC Press, Taylor and Francis Group, 2021

Reference Books:

1. Modern Electric, Hybrid Electric, and Fuel Cells Vehicles, Fundamentals, Theory and Design, 2nd Edition, Mehrdad Ehsani, Yimin Gao, Ali Emadi, CRC Press, Taylor and Francis Group, 2018

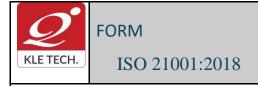
<u>Back</u>

$[\mathcal{Q}^{ullet}]$	FORM
KLE TECH.	ISO 21001:2018

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronics Engineering		Semester: VII	
Course Title: Flexible AC Transmission System (FACTS)		Course Code: 19EEEE40	1
L-T-P: 3-0-0 Credits: 3 Contact Hours:3 Hrs/W		eek	
ISA Marks: 50	Marks: 50 ESA Marks: 50 Total Marks: 100		
Teaching Hours: 40	Exam Duration: 3 Hrs		
	Unit - I		
Chapter No. 1 FACTS: Con	cept and General System Consider	ations:	
Transmission Interconnec	ction, Flow of power in AC syst	em, Limits of loading	
capability, Power flow a	and dynamic stability considerati	on of a Transmission	
Interconnection, Relative	importance of controllable parame	ters, and Basic types of	10 Hrs
FACTS controllers, Brief de	scription and Definitions of FACTS (controllers, Perspective:	
HVDC or FACTS			
Chapter No. 2 Voltage Sou	urced Converters:		
Basic Concepts, Single Pha	se Full Wave Bridge Converter Ope	ration, Single phase Leg	05 Hrs
operation, Three Phase Fu	ıll Wave Bridge Converter, Transfo	rmer Connection for 12	05 1113
pulse operation			
UNIT II			
Chapter No. 3 Current Sourced Converters:			
•	ase full wave diode rectifier, Thy		
· ·	gate turn ON, Current sourced co	onverter with turn OFF	05 Hrs
devices, Current sourced versus Voltage sourced converter.			05 1115
•	of Series and Shunt Compensation		
Objective of Shunt Compensation, Methods of Controllable VAR Generation, Static			10 Hrs
VAR Compensators SVC STATCOM, Objective of Series Compensation, Static Series			10 1113
Compensators, GCSC, TSSC, TCSC and SSSC			
Unit – III			
Chapter No. 5 Static Voltage, Phase Angle Regulators:			
Objectives of Static Voltage and Phase Angle Regulators, Approach to Thyristor			05Hrs
Controlled Voltage and Phase Angle Regulators, TCVR and TCPAR			
Chapter No. 6 Combined Compensators:			05Hrs
Unified Power Flow Controller UPFC and Interline Power Flow Controller IPFC.			
Text Books:			


Text Books:

1. Narain G. Hingorani, and Laszlo Gyugyi., "Understanding FACTS", IEEE Press, Standard Publishers Distributors, Delhi, 200, ISBN 81 86308 79 2.

References Books:

1. K. R Padiyar, "FACTS controllers in Power Transmission and Distribution", New Age International Publishers, New-Delhi, 2007, ISBN 978 81 224 2142 2.

<u>Back</u>

Document #	†:
FMCD200 5	5

Title: Curriculum Content Course wise Year:2023-27

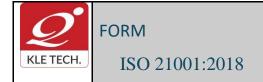
Program: Electrical & Electron	ics Engineering	Semester : VII	
Course Title: Traction Systems for Electric Vehicles		Course Code: 20EEEE401	
L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 Hrs/ Week			
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 40	LSA Warks. 33	Exam Duration: 2 Hrs	
reaching 1113. 40	 Unit − I	Liam Duration. 2 ms	
Chapter No. 1. Motion and Dy			
Introduction to hybrid and ele	-		04 hrs
motion and dynamic equations		-	011113
Chapter No. 2. Basic Architectu		<u>. </u>	
Electric vehicle configuration, E		ains. FV alternatives based	04 hrs
on power source configuration		-	0.10
garage search and sear	Unit – II		
Chapter No. 3. Modelling and			08 hrs
Need for 3 phase to 2 phase tra	-	ree phase transformation.	
stator modeling, rotor modeling	•	•	
PMSM supplied by inverter wi		<u> </u>	
supplied by inverter with 180°		· •	
,	Unit – III		
Chapter No. 4. Control of PMSM			04 hrs
Control strategies of PMSM, constant torque angle control, constant mutual air gap flux			
linkage control, optimum torque per ampere control.			
Chapter No. 5. Drive cycle ana	Chapter No. 5. Drive cycle analysis and sizing of electric machines for EVs and HEVs:		
Power train and drive cycles, N	ew York City Cycle (NYCC), Fed	eral Test Procedure (FTP	
75), sizing of electric machine,	peak torque and peak power, o	constant power speed	
ratio, EM sizing, sizing of powe	ratio, EM sizing, sizing of power electronics.		
Lab	Lab Experiments to be conducted		
1. Motion and Dynamic Equat	ion and estimation of accelera	tion time of an EV.	02 Hrs
2. Simulation of non-isolated	Buck, Boost and Buck-Boost	t DC-DC converters using	
MATLAB/Simulink or PLECS			04 Hrs
2 . No. 11:		P P	0.4.11
3. Multi-quadrant and Multi-input DC-DC converters for EV applications.			04 Hrs
4. Single and three phase volt	age source inverters with PWN	1 techniques	02 Hrs
5. Simulation of PMSMs fed with three phase supply voltages			02 Hrs
6. Simulation of VSI fed PMSMs			04 Hrs
	Structured Enquiry		
7. Develop and analyze the given	ven control strategy for a PMSI	M drive and interpret the	06 Hrs

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

results of the simulation, draw practical conclusions from them and prepare a technical report.

Text Books:

- 1. NPTEL course notes on "Introduction to Hybrid and Electric Vehicles", IIT Guwahati.
- 2. Chris Mi and M Abul Masrur, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2018.


<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: Electrical & Electronic	cs Engineering	Semester: VII	
Course Title: Nonlinear Control	Systems	Course Code: 25EEEE409	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hrs/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	
	Content		
	Unit - I		
noon-linear systems (Amplitude	e dependency, frequency- uency entrainment and j	on, Fundamental characteristics of amplitude dependency, limit cycles, ump resonance) Common physical n-off etc.)	05 hrs
Chapter 02. Describing function functions of – ideal relay, relay	ns: Basic concept-first h with dead zone, saturatio	narmonic approximation, Describing n, dead-zone and saturation, dead-relay with hysteresis, relay with	05 hrs
Chapter 03. Introduction to Singular points and Phase plane methods Linearized system equations, Definition of phase plane, phase trajectory, system eigenvalues, singular points and its classification, examples on linearizing & singular points			05 hrs
Unit - II			
Chapter 04. Stability Analysis by describing function Limit cycles, Basic concepts of stability analysis (Nyquist criterion), Examples to determine amplitude and frequency of limit cycles, Merits & demerits of describing method analysis.			08 hrs
Chapter 05. Phase plane analysis of non-linear systems Phase trajectory construction by delta method and method of isoclines, computation of time, merits and demerits of phase plane method, Examples on delta and isoclines method. System analysis by phase-plane methods.			07 hrs
	Unit - III		
of scalar and quadratic function	ns, Liapunov's second me Liapunov functions – Kra	ility theorems, Positive definiteness thod, Liapunov's method for linear sovic method and variable gradient	10 hrs
Text Books: 1. Nagarath and Gopal, Control Katsuhiko Ogata, Modern Control Reference Book:		ey Eastern Ltd., 1995, 2 nd edition. , 4 th edition	

1. M. Gopal, *Control Systems-Principles and Design,* TMH 2002, 2nd edition

<u>Back</u>

Document #:	
FMCD2005	

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronic	s Engineering	Semester : VII	
Course Title: Modern Control Systems Course Code:29		Course Code:25EEEE410	
L-T-P: 3-0-0	Credits: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	
	Content		
	Unit - I		
Chapter No. 01: State Space An	alysis in continuous time	e	
Mathematical modelling of c	dynamic systems in st	tate space, State space	
representation of Mechanical ar	nd electrical systems, Sta	te space representation of	
transfer functions, relations b	etween state equation	and transfer functions,	08 hrs
Characteristics equation, eigen	value and eigen vector c	of state matrix, Solution of	
time-invariant state equation	, determination of S	State Transition Matrix,	
Controllability, Observability.			
Chapter No. 02 : Controller Desi	<u> </u>		
Introduction to design of contro	·	•	08 hrs
phase lag controllers in time and	d frequency domain, Pol	e placement design, State	
observers.			
	Unit - II		
Chapter No. 03: : State Space A	•		
Z-Transform method for solving	•	· ·	
Types of state models, Eigen va State transition matrix and it	<u> </u>	•	08 hrs
Transition Matrix, State Space		-	00 1113
solving discrete time state space	•	•	
- space equations	equations, biscretization	ii oi continuous time state	
Chapter No. 04: Controllability,	Observability & Stability		
Concepts of Controllability a	•		
Observability Duality between		•	08 hrs
Analysis of closed loop systems i		-	
by use of the Bilinear Transform	•	, ,	
	Unit - III		
Chapter No. 05: Non-Linear Sys	tem		
Nonlinear Systems: Common Phy	sical nonlinearities, The	Phase-Plane Method, Basic	
concepts, singular Points, Stabi	ility of nonlinear systen	ns, Construction of Phase	08 hrs
trajectories, , The Describing function Method: Basic concepts, derivation of			00 1115
describing functions for comme	on nonlinearities, Stabil	ity analysis by Describing	
Function approach, Lyapunov St	ability Criterion		

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Text Books:

- 1. Discrete-Time Control systems K. Ogata, Pearson Education/PHI, 2nd Edition
- 2. B. C Kuo, Digital Control Systems, 2nd Edition, Oxford University Press, Inc., 1992

Reference Books:

1. Digital Control and State Variable Methods by M.Gopal, TMH

<u>Back</u>

Q	FORM
KLE TECH.	ISO 21001:2018

Document #	†:
FMCD200	5

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electr	onics Engineering	Semester : VII	
Course Title: Switched Mode Power Converters		Course Code: 25EEEE413	
L-T-P: 3-0-0	L-T-P: 3-0-0 Credits: 03 Contact Hours: 3 hrs /Week		
ISA Marks: 50			
Teaching Hours:40	Exam Duration: 03 Hrs		
	Unit – I	,	
Chapter No. 1.DC Power Su	ipplies:		
Introduction, transformer models, the flyback converter: Continuous Current Mode,			
Discontinuous Current Mo	de, Summary of flyback co	nverter operation, the forward	
converter, summary of	forward converter, operat	ion, the doubly ended (two	15 hrs
switch)forward converter,	the push-pull converter, su	ımmary of push-pull converter	
operation, full-bridge and	half-bridge DC-DC converte	rs, multiple outputs, converter	
selection, power factor corr	ection, simulation of DC pow	er supplies, pwm control circuits,	
the Ac line filter, the comp	lete DC power supply . (Nee	ed for power factor correction –	
Simulation demo)			
	Unit – II		
Chapter No. 2. DC-AC Swite	ched Mode Inverters:		
Introduction, basic concepts	s of switch-mode inverters, sin	ngle phase inverters, three phase	15 hrs
	•	verters, other inverter switching	151113
schemes, rectifier mode of operation.			
	Unit – III		
Chapter No. 3. Multilevel Converters:			05 hrs
· ·		Bus, Converters Derived from the	
	le Clamped Topology, Flying	Capacitor Topology, Multi-pulse	
converter			
Chapter No. 4. Diode Clamp			
		description: voltage clamping,	05 hrs
	n of multilevel converters, C	onventional SVPWM, Multilevel	
space vector modulation			
Text Books:	and and M. Dahkina Dawar Fla	etvenies Canusatore Analisations and	<u>.</u>
		ctronics: Converters, Applications and	ג
Design, 3 rd Edition, John Wiley and Sons, 2002 2. Daniel W Hart, Power Electronics, 1, Tata McGraw-Hill, 2011			
YorkSergio Alberto González, Santiago Andrés Verne, María Inés Valla, Multilevel converters for the service of the servic			for
Industrial Applications, CRC Press, 2014.			
Reference Books:			
1. Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3, PHI, 2005			
2. Bose B. K., , Power Electronics and AC Drives, 5, PHI, 2003			
3. Rashid M. H, Digital Power Electronics and Applications, 1, Elsevier, 2005			
4. V. Ramanarayanan, Switched Mode Power Converters Notes, IISC, Bangalore, 2008			

<u>Back</u>

Q	FORM
KLE TECH.	ISO 21001:2018

Rev: 1.0

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electronics Engineering		Semester: VII		
Course Title: Digital Control System		Course Code: 25EEEE411		
L-T-P: 3-0-0	L-T-P: 3-0-0 Credit: 3		Contact Hrs: 3 Hrs/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration:3 Hrs			
	Unit – I			
sampled data system;	tion of Discrete signals and Syste Time invariant system response ital simulation of an analog system	e, Recursive solution;	03 Hrs	
Chapter No.2 Sampling	; and Reconstruction of signal ideration; zero-order and first-o	s: Impulse sampling;	04 Hrs	
Chapter No.3 Z-transform and its application: Z-transform analysis of sampled data system; Obtaining z-transform by convolution integral; Inverse z transform; Mapping between s-plane and z-plane; Linear difference equations, pulse response, Z-Transform method for solving difference equations; Pulse transforms function; Modified z-transform; Bilinear transformation; Frequency pre-warping.			08 Hrs	
Unit - II				
Chapter No.4 Sampled Data Control Systems: Transfer Function of discrete data systems, Pulse and Z transform Functions, Transfer Function of discrete data systems with Cascade elements, Transfer Function of Zero- Order and 1st – Order Holds, Transfer Function of Closed Loop discrete data systems.			05 Hrs	
Chapter No.5 Design of Discrete-time controller: Time-domain specifications; Error constants for different discrete control configurations; Digital PID controller; Relationship with analog and digital controller parameters: Frequency responses; Realization of position and velocity form of discrete-time PID controller			05 Hrs	
Computation of State Transition Matrix, State Space Representation of discrete time systems, Matrix solving discrete time state space equations, Discretization of continuous time state – space equations.			05 Hrs	
Unit - III				

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Chapter No.7 Controllability, Observability & Stability: Concepts of		
Controllability and Observability, Tests for controllability and Observability		
Duality between Controllability and Observability, Transfer matrix. Analysis of	06 Hrs	
closed loop systems in the Z-Plane. Jury stability test – Stability Analysis by use of		
the Bilinear Transformation.		
Chapter No.8 State Feedback Controller: Design of state feedback controller		
through pole placement – Necessary and sufficient conditions.		
Text Books		
1. Discrete-Time Control systems – K. Ogata, Pearson Education/PHI, 2nd Edition		
2. B. C Kuo, Digital Control Systems, 2nd Edition, Oxford University Press, Inc., 1992		
Reference Books:		

1. Digital Control and State Variable Methods by M.Gopal, TMH

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Program: Electrical & Electronics Engineering		Semester: VII
Course Title: Electricity & Safety Measures		Course Code: 25EEEE412
L-T-P: 3-0-0	Credits:3	Contact Hours:3 hrs/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Examination		
Duration:3hrs		

Introduction

This course on 'Electricity and Safety Measures' will introduce you to electricity, from generation to transmission to cities/ towns, to distribution up to the end user. You will learn the elementary electrical, overview of electrical power system, Quality of electrical supply, general tools and tackle, Major substation equipment, Operation & maintenance practices for substation and transformer in the first part of this course. While the use of electricity is a boon to us, its misuse could lead to major accidents. We shall learn importance of earthing and guidelines for providing earthing arrangements, Protection of the electrical equipment for safe use of electricity, Important electricity rules related to safety in the second part of this course. While we do take all precautions to avoid the unforeseen, what if some accident does happen? You will be introduced to the basic safety measures. You shall learn about the essential First-Aid measures. Immediate First-Aid may save life. It is essential to restore the electrical system, at the earliest after any disaster; this is the issue of Disaster Management. All these aspects are covered under the third part of this course. As a common interest course, this course helps in building up your knowledge and skill on electrical power and safety.

Course layout

Week 1: Elementary Electrical - Basics of Electricity Week 2: Exposure to General Tools and Tackles,

Testing of wiring Installation

Week 3: Electrical Power System: Overview

Quality of Electrical supply

Power Distribution System - Basics

Distribution Line equipment

Week 4: Transformers Major Substation Equipment Operation & Maintenance Practices

Week 5: Earthing

Week 6: Electrical System Protection

Week 7: Important Electricity Rules Related to Safety

Week 9: Electrical Safety & Week 10: Accident Prevention & Protection

Week 11: First Aid

Week 12: Disaster Management

Books and references

IGNOU course material available at eGyankosh

Course OEE-001: Electricity & Safety Measures;

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

• Course OEE-002; OEEL-001 of Programme "Certificate of Competency in Power Distribution" being offered by SOET, IGNOU Block 2: Electrical Safety and Disaster Management of Course BEE-002:Energy Management,

 Block 2: Operation & Maintenance of course BEE-001: Power Distribution Sector of Programme "Advanced Certificate in Power Distribution" being offered by School of Engineering & Technology(SOET), IGNOU

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0

Year:2023-27 **Title: Curriculum Content Course wise**

Program: Electrical & Electronics Engineering		Semester: VII	
Course Title: AUTOSAR		Course Code: 25EEEE404	
L-T-P: 2-0-1	-T-P: 2-0-1 Credits: 3 Contact Hours: 4 Hrs/We		eek
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 24	Practical Hrs:16	Exam Duration: 2 hrs	
	UNIT-I		
Chapter No: 1. AUTOSAR Fundamentals Introduction to AUTOSAR – evolution, consortium, partnership; AUTOSAR layered Architecture and methodology; ASWC – AUTOSAR Basic software, Virtual Function Bus (VFB), Application Software Component, Types of SW-components; Run Time			05 hrs
Environment (RTE) – RTE Generation F	Process: Contract Phase, G	eneration Phase.	
Chapter No: 2. Overview of BSW BSW Constituents, Memory layer, CC Operating system, Interfaces, Complex	•		05 hrs
	UNIT-II		
Chapter No: 3. Communication Stack Communication module, CAN stack, LIN stack and FlexRay stack, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM). Chapter No: 4. MCAL and ECU abstraction Layer			05 hrs 05 hrs
Microcontroller Drivers, Memory drivers: on-chip and off chip drivers, IO drivers (ADC, PWM, DIO), Communication drivers.			051113
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UNIT-III		
Chapter No: 5. Service Layer Diagnostic Event Manager, Function inhibits Manager, Diagnostic communication manager, Network management, Protocol data unit router, Diagnostic log and trace unit.			04 hrs
Lab Experiments:			
 Implementation of ASWC with OS and RTE Integration of ASWC with communication stack Code navigation in RTE RTE Events trigger generation for runnables Building wrappers for code migration Implementation of CAN Communication Stack Configure the COM Module for communication between ECUs Monitoring the code flow from COM module to CAN using dbc file Trace the Signal/ Protocol Data Unit in the com stack Generate the Code for COM Send and COM Receive signal Implementation of Gateway Functionality – Signal Routing, Application Routing and PDU Routing 			16 hrs

CONTROLLED COPY KLE Tech Confidential

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Cur	riculum Content Course	wise	Year:2023-27

Text Books:

- 1. Oliver Scheid, AUTOSAR Compendium-part 1- Application and RTE, 2015.
- 2. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003
- 3. Denton.T, Advanced automotive fault diagnosis, 2000
- 4. David Smith, Kenneth Simpson, The Safety Critical Systems Handbook, 5th Edition, 2020

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

Program: Electrical and Electronics Engineering		Semester: VII Semester
Course Title: Design for Testability		Course Code: 25EEEE414
L-T-P: 1-0-2 Credits: 3		Contact Hours: 5 Hrs/week
ISA Marks: 67 ESA Marks: 33		Total Marks: 100
Teaching Hours: 16 Hrs	Lab Hrs: 48 hrs	Examination Duration:2 Hrs

Chapter No. 1. Introduction to Design for Testability

Overview of the importance of design for testability in modern electronic systems.

Historical context and evolution of testability strategies.

Introduction to key concepts: fault models, testing methodologies, and industry standards (3 Hrs)

Chapter No. 2. Built-in Self-Test (BIST) Techniques

Principles and implementation of built-in self-test techniques.

Advantages and limitations of BIST in electronic circuit testing.

Lab sessions: Simulations and exercises focusing on BIST. (3 Hrs)

Chapter No. 3. Scan Chains and Serial Testing

Concept of scan chains and their role in serial testing.

Implementation and optimization of scan chains for improved testability.

Lab sessions: Hands-on exercises with scan chain design and testing (2 Hrs)

Chapter No. 4. Fault Modeling and Simulation

Development of fault models for electronic circuits.

Utilization of simulation tools to predict and analyze potential faults in a design.

and deskew. (2 Hrs)

Chapter No. 5. Design for Testability Strategies

Exploration of various design for testability strategies.

Case studies: Analyzing successful implementations of design for testability.(1.5 Hrs)

Chapter No. 6. Industry Standards in Testability

Overview of industry standards related to testability.

Compliance and certification requirements for testable designs. (1.5 Hrs)

Reference Books:

- 1. Tripathi, Suman. Advanced VLSI Design and Testability Issues. CRC Press, 2020.
- 2. Wang, Laung-Terng. VLSI Test Principles and Architectures. Morgan Kaufmann, 2006.
- 3. Huhn, Sebastian. Design for Testability, Electrical & Electronics Engineering and Reliability. Springer Nature, 2021.

Back

FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27

Program: Electrical and Electronics Engineering		Semester: VII Semester
Course Title: System on Chip Design		Course Code: 25EEEE415
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40Hrs	Examination Duration:3 Hrs	

Unit I

Chapter No. 1: Introduction

Introduction: Driving Forces for SoC - Components of SoC - Design flow of SoC Hardware/Software nature of SoC - Design Trade-offs - SoC Applications

Chapter No. 2: System Level Design

System-level Design: Processor selection-Concepts in Processor Architecture: Instruction set architecture (ISA), elements in Instruction Handing-Robust processors: Vector processor, VLIW, Superscalar, CISC, RISC—Processor evolution: Soft and Firm processors, Custom Designed processors- on-chip memory.

Unit II

Chapter No. 2: On-chip bus and IP based design

Interconnection: On-chip Buses: basic architecture, topologies, arbitration and protocols, Bus standards: AMBA, Core Connect, Wishbone, Avalon - Network-on chip: Architecture topologiesswitching strategies - routing algorithms flow control, Quality-of-Service- Re-configurability in communication architectures. IP based system design: Introduction to IP Based design, Types of IP, IP across design hierarchy, IP life cycle, Creating and using IP - Technical concerns on IP reuse – IP integration - IP evaluation on FPGA prototypes.

Chapter No. 4: SoC Implementation

SOC implementation: Study of processor IP, Memory IP, wrapper Design - Real-time operating system (RTOS), Peripheral interface and components, High-density FPGAs - EDA tools used for SOC design.

Unit III

Chapter 3: SoC Testing

SOC testing: Manufacturing test of SoC: Core layer, system layer, application layer-P1500 Wrapper Standardization-SoC Test Automation (STAT).

Text Books:

- 1. Michael J.Flynn, Wayne Luk, "Computer system Design: System on-Chip", Wiley-India, 2012.
- 2. Sudeep Pasricha, Nikil Dutt, "On Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers, 2008.
- 3. W.H.Wolf, "Computers as Components: Principles of Embedded Computing System Design", Elsevier, 2008.

Reference Books:

1. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", 2nd Edition, Springer, 2012.

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Year:2023-27	

2. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on-chip. Springer, 2006.

3. Wayne Wolf, "Modern VLSI Design: IP Based Design", Prentice-Hall India, Fourth edition, 2009.

<u>Back</u>

KLE TECH.	FORM ISO 21001:2018	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content Course wise		Vaar:2022_27	

Program: Electrical & Electronics Engineering		Semester : VII
Course Title: Advanced IC Packaging		Course Code: 25EEEE405
L-T-P: 1-0-2	Credits: 03	Contact Hours: 5 hrs /Week
ISA Marks: 67	ESA Marks: 33	Total Marks: 100
Teaching Hours:16	Lab Hrs: 48	Exam Duration: 02 Hrs

Chapter 1: Introduction to Advanced Semiconductor Packaging

- Overview of semiconductor packaging
- Evolution of packaging technologies
- Challenges and trends in advanced packaging

Chapter 2: Packaging Materials and Processes

- Materials used in advanced packaging
- Assembly and packaging processes
- Flip-chip, wafer-level packaging, and 3D packaging
- Thermal and reliability considerations

Chapter 3: System-in-Package (SiP) and Multi-Chip Modules (MCM)

- Introduction to SiP and MCM
- Design considerations for SiP and MCM
- Introduction to SerDes, on-die PHYs and signal integrity

Chapter 4: Advanced Interconnect Technologies

- Microbump and fine-pitch technologies
- Through-Silicon Via (TSV) and 3D interconnects
- High-density interconnects (HDI)

Chapter 5: Layout of Package Substrates (Lecture & Lab)

- Review provided bump-to-ball connectivity data and fill out assigned lab worksheet
- Open single-die package layout database in a commercial package design tool such as APD+ and explore signal routing and power planes, filling out assigned lab worksheet
- Given a bump-to-ball map and substrate layer information, implement substrate layout

Chapter 6: Layout of Silicon Interposers (Lecture & Lab)

Layout a silicon interposer given a microbump map for an ASIC and C4 ball assignments using a commercial router such as Innovus

Reference Books

- 1. Rao R Tummala, Fundamentals of Device and Systems Packaging, McGraw Hill, 2020.
- 2. Glenn R. Blackwell, The Electronics Packaging Handbook, CRC Press, 2017.
- 3. Bernard S Matisoff, Handbook of Electronics Packaging Design and Engineering, Springer, 2012.
- 4. Rao R Tummala, Fundamentals of Microsystems Packaging, McGraw Hill, 2001.

Back

Document #:	
FMCD2005	

Title: Curriculum Content Course wise Year:2023-27

Program: Electrical & Electron	ics Engineering	Semester: VII		
Course Title: CMOS ASIC Design		Course code: 25EEEE407		
L-T- P: 1-0-2	Credits: 03	Contact Hrs: 05 hrs/wee	veek	
ISA Marks: 67	ESA Marks: 33	Total Marks: 100		
Teaching Hrs: 16 hrs	Lab Hrs: 48 hrs	Exam Duration: 2 Hrs		
Chapter No. 1. Design of con	nbinational and sequentia	al logic gates in CMOS.		
Layout and characterization of	standard cells. Verilog for	r representing gate level	04 Hrs	
netlists. Sequential circuit timi	ng and static timing analys	sis.		
Chapter No. 2.				
Cell and net delays and cross-t	alk. Rationale and impler	mentation of scan chains	04 Hrs	
for testing standard-cell based	logic circuits.			
Chapter No. 3. Physical de	sign of standard-cell ba	sed CMOS ASICs: scan	04 Hrs	
insertion, placement, clock tree	e synthesis and routing.		04 1113	
Chapter No. 4. Netlist trans	formations at each step	of the physical design		
process. Net parasitic and par	asitic extraction. Use of F	PLLs for clock generation	05 Hrs	
and deskew.				
Chapter No. 5. Standard data		technology and design:		
LEF, Liberary, SDC, DEF and SPEF.			05 Hrs	
Clock gating and power gating for reduction of device power consumption.				
Chapter No. 6. Design for reliability: electromigration, wire self heat and ESD				
checks and fixes.		05 Hrs		
An overview of package design and implementation and system level timing				
Case Study: Design of counter			03 Hrs	
Reference Books:				
1. The Design & Analysis of	VLSI Circuits, L. A. Glasse	ey & D. W. Dobbepahl,		
Addison Wesley Pub Co.198				
2. H. Bhatnagar, Advanced AS		ynonsys Design Compiler		
<u> </u>		mopaya beaign complier		
Physical Compiler an PrimeTime, 2nd edition, 2001.				
3. Springer Science+Business Media, LLC 2009				
4. Tools: Cadence Innovous, Encounter				

<u>Back</u>

Course Content

Course Code: 25EEEE408	Course Title: Human Machin		
L-T-P: 1-0-2	Credits: 3	Contact Hrs: 5/wee	ek
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 14	Lab Hrs: 48	Exam Duration: 2 H	Irs
	Content		
Chapter 1: Introduction to HM	I - Overview of HMI, general in	troduction to HMI,	
HMI Architecture & Concepts/	HMI Sub-Components (Widge	ts, Framework,	02 Hrs
state machine)			
Chapter 2: Automotive HMI - Evolution of HMI in cars, HMI for car multimedia,			03 Hrs
GUI Tools (GTK, QT, HTML5)			U3 HI3
Chapter 3: UX and Guidelines - Introduction to UX design (theory, design			
thinking), graphics design (Blender, GIMP), 2D/3D rendering, OpenGL, GPU			02 Hrs
architectures, shader programming			
Chapter 4: Car Multimedia - Instrument cluster, in-vehicle infotainment,			02 Hrs
professional system/ rear-seat entertainment			02 1113
Chapter 5: App Development and Testing - App development for Android/iOS,			03 Hrs
Unity, HMI testing and automation			051113
Chapter 6: Advanced Topics - Voice/ Gesture control, haptics, eye gaze sensor,			02 Hrs
Virtual/ Augmented Reality, Analytics			UZ IIIS

Experiment Wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Lab Assignments	b Assignments Total Weightage: 24		No. of lab sessions: 10.00
Expt./ Job No.	Experiment / Job Details	Correlation of Experiment with the theory	Marks / Experiment	Correlation of Experiment with the theory
1	Widget design using GUI tools	1.00	6	Chapters 1 & 2
2	UX design using OpenGL, rendering using Blender	1.00	6	Chapters 1 & 3
3	Design instrument cluster for dashboard and infotainment control	1.00	6	Chapters 2, 3 & 4
4	Design an app to control vehicle infotainment	1.00	6	Chapters 2, 3, 4 & 5

_	system using a mobile device			No. of lab
Category	: Course Project	Total Weightag	e: 5	sessions: 12.00
Expt./ Job No.	Experiment / Job Details	Correlation of Experiment with the theory	Marks / Experiment	Correlation of Experiment with the theory
1	Course Project	1.00	9	Chapters 1, 2, 3, 4 & 5
	Learning Outcomes: The students should be able 1. Apply the fundamen generate requiremen 2. Develop suitable UX 3. Implement HMI solu 4. Design test cases for 5. Document the HMI a	tal concepts of H nts design for HMI a tions for given us HMI applications	pplications e case	

Materials and Resources Required:

- i. Donald Norman, "The Design of Everyday Things", Basic Books (Revised Edition), 2014.
- ii. Bill Hollifield, Dana Oliver, Ian Nimmo, and Eddie Habibi, "The High Performance HMI Handbook", Plant Automation Services.
- iii. Shuo Gao, Shuo Yan, Hang Zhao, and Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature, 2021.
- iv. https://aliresources.hexagon.com/brochures/maximize-operator-effectiveness-part-i-high-performance-hmi-principles-and-best-practices
- v. https://aliresources.hexagon.com/all-resources/maximize-operator-effectiveness-part-ii-high-performance-hmi-principles-and-best-practices
- vi. GTK https://docs.gtk.org/
- vii. Qt https://doc.qt.io/
- viii. Blender https://www.blender.org/support/

development process

- ix. OpenGL https://www.opengl.org/
- x. TouchGFX https://support.touchgfx.com/docs/introduction/welcome

Back

Document #:	
FMCD2005	

Year:2023-27 **Title: Curriculum Content Course wise**

Program: Electrical & Electronics Engineering		Semester: VII	
Course Title: System Verilog using Verification		Course code: 25EEEE406	
L-T- P: 1-0-2	Credits: 03	Contact Hrs: 05 Hrs /week	
ISA Marks: 67	ESA Marks: 33	Total Marks: 100	
Teaching Hrs: 15Hrs	Lab Hrs : 48 Hrs	Exam Duration: 2 Hrs	
Chapter No. 1. Verification Concepts Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.			02 hrs
Chapter No. 2. System Verilog – Language Constructs System Verilog constructs - Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, mod-ports.			02 hrs
Chapter No. 3. System Verilog – Classes & Randomization SV Classes: Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.			02 hrs
Chapter No. 4. System Verilog – Assertions & Coverage Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification: Motivation, Types of coverage, Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.			04 hrs
Chapter No. 5. Building Testbench Layered testbench architecture. Introduction to Universal Verification Methodology, OverVIIew of UVM Base Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM enVIIronment structure, Connecting DUT- VIIrtual Interface Reference Books:			05hrs

Reference Books:

- 1. System Verilog LRM
- 2. Chris Spear, Gregory J. Tumbush System Verilog for verification a guide to learning the test bench language features - Springer, 2012
- 3. Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, ModBackelsim for Verilog

<u>Back</u>