

Curriculum Structure and Curriculum Content for the Academic Year - 2019-23

School / Department: Electronics & Communication Engineering

Program: Bachelor of Engineering

Table of Contents

Vision and Mission of KLE Technological University3
Vision and Mission Statements of the School / Department4
Program Educational Objectives/Program Outcomes and Program-Specific Objectives 5
Curriculum Structure-Overall7
Curriculum Structure-Semester wise11
Semester - I 11
Semester - II
Semester- III
Semester- IV14
Semester- V
Semester- VI
Semester- VII
Semester- VIII21
List of Program Electives19
List of Open Electives21
Curriculum Content, Course wise

Vision and Mission of KLE Technological University

Vision

KLE Technological University will be a national leader in Higher Education—recognised globally for innovative culture, outstanding student experience, research excellence and social impact.

Mission

KLE Technological University is dedicated to teaching that meets highest standards of excellence, generation and application of new knowledge through research and creative endeavours.

The three-fold mission of the University is:

- To offer undergraduate and post-graduate programs with engaged and experiential learning environment enriched by high quality instruction that prepares students to succeed in their lives and professional careers.
- To enable and grow disciplinary and inter-disciplinary areas of research that build on present strengths and future opportunities aligning with areas of national strategic importance and priority.
- To actively engage in the Socio-economic development of the region by contributing our expertise, experience and leadership, to enhance competitiveness and quality of life.

As a unified community of faculty, staff and students, we work together with the spirit of collaboration and partnership to accomplish our mission.

Vision and Mission Statements of the School / Department

Vision

KLE Tech-School of Electronics and Communication will be well recognized nationally and internationally for excellence in its educational programs, pioneering research and impact on the industry and society.

Mission

- 1. To create a unique learning environment through rigorous curriculum of theory and practice that develops students' technical, scientific, and professional skills and qualities to succeed in wide range of electronics and computing businesses and occupations.
- 2. To nurture spirit of innovation and state-of-the-art research to advance the boundaries of disciplinary and interdisciplinary knowledge and its applications.
- 3. To collaborate within and beyond the discipline to create solutions that benefit humanity and society.

Program Educational Objectives/Program Outcomes and Program-Specific Objectives

Program Educational Objectives -PEO's

- 1. Graduates will demonstrate peer- recognized technical competency to solve contemporary problems in the analysis, design and development of electronic devices and systems.
- 2. Graduates will demonstrate leadership and initiative to advance professional and organizational goals with commitment to ethical standards of profession, teamwork and respect for diverse cultural background.
- 3. Graduates will be engaged in ongoing learning and professional development through pursuing higher education, and self-study.
- 4. Graduates will be committed to creative practice of engineering and other professions in a responsible manner contributing to the socio-economic development of the society.

Program Outcomes-PO's

PO1: Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.

PO 2: Problem analysis:

Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: Design/Development of Solutions:

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication:

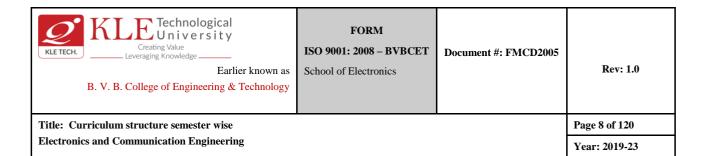
Communicate effectively on complex engineering activities with the engineering community and with the esociety at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11: Project management and finance:

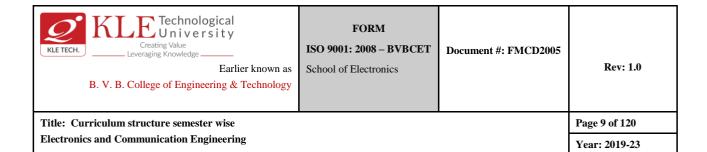
Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning:

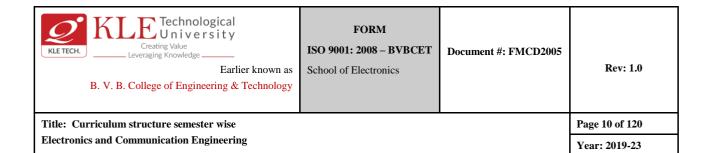
Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.


Program Specific Objectives -PSO's

- PSO 1: An ability to apply design principles in the development of hardware and software systems of varying complexity.
- PSO 2: Demonstrate the knowledge of the state of art tools and apply for the development of VLSI circuits/systems.
- PSO 3: An ability to use appropriate modern techniques for analysis, design and development of Communication components/systems.


Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 7 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Curriculum Structure-Overall


Semester Credits: 18	5						Total	Program
	I	II	II III IV V		V	VI	VII	VIII
	Single Variabl e Calculu s 18EMA B101 (4-1-0)	Multivari able Calculus 18EMAB 102 (4-1-0)	BS: Integr al Transf orms and Statisti cs 15EM AB203 (4-0-0)	BS: Linear Algebra &Partial Differen tial Equatio ns 17EMAB 208 (4-0-0)	PC10: CMOS VLSI Circuits 19EECC 301 (4-0-0)	H3: Profess ional Aptitud e and Logical reasoni ng. 16EHSC 301 (3-0-0)	Wirel ess and Mobil e Netw orks 22EE CC40 1 (3-0-0)	PSE Electiv e 6 18EECE (3-0-0)
	Engine ering Physics 15EPH B101 (3-0-0)	Engineeri ng Chemistr y 15ECHB1 02 (3-0-0)	PC1: Circuit Analys is 15EEC C201 (4-0-0)	ES4: Electro magneti c Fields and Waves 21EECC 209 (3-0-0)	PC11: Comm unicati on System I 21EECC 302 (4-0-0)	PC13: Autom otive Electro nics 17EECC 305 (3-0-0)	PSE Electi ve 2 18EE CE (3-0- 0)	Open Electiv e 18EECE (3-0-0)
Course with course code	Engine ering Mecha nics 15ECVF 101 (4-0-0)	Problem Solving with Data Structure s 18ECSP1 02 (0-0-3)	PC2: Analo g Electr onic Circuit s 15EEC C202 (4-0-0)	PC5: Linear Integrat ed Circuits 19EECC 203 (4-0-0)	PC12: Digital Signal Process ing 17EECC 303 (4-0-0)		PSE Electi ve 3 18EE CE (3-0- 0)	Interns hip- Trainin g 18EECI 493 (0-0-6) Interns hip- Project 20EEC

							W494 (0-0- 11)
C Progra mming for Proble m solving 18ECSP 101 (0-0-3)	Engineeri ng Explorati on 15ECRP1 01 (0-0-3)	PC3: Digital Circuit s 19EEC C201 (4-0-0)	PC6: Control Systems 15EECC 206 (4-0-0)	PC13: Operati ng System & Embed ded System s Design 17EECC 304 (3-0-0)	PC14: Compu ter Comm unicati on Networ ks 17EECC 306 (4-0-0)	PSE Electi ve 4 18EE CE (3-0- 0)	Project Work 20EEC W402 (0-0- 11)
Basic Electric al Engine ering 18EEEF 101 (3-0-0)	Basic Electroni cs 18EECF1 01 (4-0-0)	PC4: Signals & Syste ms 19EEC C202 (4-0-0)	PC7: ARM Process or & Applicat ions 15EECC 207 (3-0-0)	PCL5: Comm unicati on and signal process ing Lab 17EECP 301 (0-0-1)	PC11: Comm unicati on System II 21EECC 307 (3-0-0)	PSE Electi ve 5 18EE CE (3-0- 0)	
Social Innovat ion 15EHSP 101 (0-1-1)	Basic Mechani cal Engg. 15EMEF1 01 (2-1-0)	PCL1: Digital Circuit s Lab 15EEC P201 (0-0-1)	PC8: Digital System Design using Verilog 15EECC 208 (0-0-2)	PCL6: RTOS Lab 17EECP 302 (0-0-1)	PSE Electiv e 1 17EECE XXX (3-0-0)	P3: Senio r Desig n Proje ct 20EE CW4 01 (0-0-6)	

Engine ering Physics Lab 16EPH P101 (0-0-1)	Professio nal Commun ication 15EHSH1 01 (1-1-0)	PCL2: Analo g Electr onic Circuit s Lab 15EEC P202 (0-0-1)	PCL3: Data acquisiti on and controls Lab 15EECP 203 (0-0-1)	PCLx: CMOS VLSI Circuits Lab 19EECP 301 (0-0-1)	PCL7: Compu ter Comm unicati on Networ ks Lab 17EECP 303 (0-0-1)	CIPE & EVS 15EH SA40 1 (2-0- 0)	3
		ES2: Microc ontroll er Archit ecture & Progra mmin g 21EEC F202 (0-0-3) C Progra mmin g (Dip)1 8EECF 204 (0-0-3)	PCL4: ARM Microco ntroller Lab 15EECP 204 (0-0-1)	PC15: Machin e Learnin g 17EECC 307 (2-0-1)	PCL8: Autom otive Electro nics Lab 22EECP 304 (0-0-1)		

				PCL3: Data Structure Applicati ons Lab 21EECF2 01 (0-0-2) PCL3: Data Structur e Using C Lab(Dipl oma) 21EECF2 03 (0-0-3)	P1: Mini Project 17EEC W301(0-0-3)	P2: Minor Project 17EEC W302 (0-0-6)		3
Credits	<u>21</u>	<u>23</u>	<u>24</u>	<u>24</u>	<u>24</u>	<u>24</u>	<u>24</u>	<u>21</u>

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 11 of 120		
Electronics and Communication Engineering	Year: 2019-23		

FIRST SEMESTER B E PROGRAMSCHEME FOR 2019-2020

Electrical Science Stream

This stream comprises of Departments of Electrical Engg / Electronics & communication Engg / Computer Science and Engg.

No	Code	Course	Category	L-T-P	Credits	Contact Hours	CIE	SEE	Total	Exam Duratior
1	18EMAB101	Single Variable Calculus	BS	4-1-0	5	6	50	50	100	3 hrs
2	15EPHB101	Engineering Physics	BS	3-0-0	3	3	50	50	100	3 hrs
3	15ECVF101	Engineering Mechanics	ES	4-0-0	4	4	50	50	100	3 hrs
4	18ECSP101	C Programming for Problem solving	ES	0-0-3	3	6	80	20	100	3 hrs
5	18EEEF101	Basic Electrical Engineering	ES	3-0-0	3	3	50	50	100	3 hrs
6	15EHSP101	Social Innovation	HSS	0-1-1	2	3	50	50	100	1.5hrs
7	16EPHP101	Engineering Physics Lab	BS	0-0-1	1	2	80	20	100	3 hrs
		Total		14-2-5	21	27				

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 12 of 120		
Electronics and Communication Engineering	Year: 2019-23		

SECOND SEMESTER B E PROGRAMSCHEME FOR 2019-20

Electrical Science Stream

This stream comprises of Departments of Electrical Engg / Electronics & communication Engg / Computer Science and Engg.

No	Code	Course	Catego	L-T-P	Credit	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EMAB102	Multivariable Calculus	BS	4-1-0	5	6	50	50	100	3 hrs
2	15ECHB102	Engineering Chemistry	BS	3-0-0	3	3	50	50	100	3 hrs
3	18ECSP102	Problem Solving with Data Structures	ES	0-0-3	3	6	80	20	100	3 hrs
4	15ECRP101	Engineering Exploration	ES	0-0-3	3	6	80	20	100	3 hrs
5	18EECF101	Basic Electronics	ES	4-0-0	4	4	50	50	100	3 hrs
6	15EMEF101	Basic Mechanical Engg.	ES	2-1-0	3	4	50	50	100	3 hrs
7	15EHSH101	Professional Communication	HSS	1-1-0	2	3	50	50	100	1.5 hrs
	Total			15-2-6	23	32				

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 13 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Semester: III

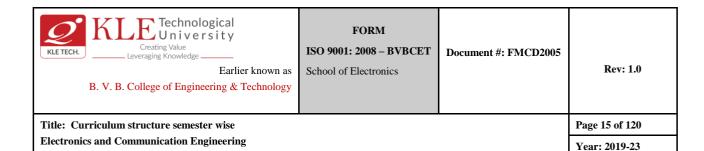
No	Code	Course	Catego	L-T-P	Credi	Conta		ESA	Total	Exam Duration
1	15EMAB203	BS: Integral Transforms and Statistics	BS	4-0-0	4	4	50	50	100	3 hours
2	15EECC201	PC1: Circuit Analysis	PC	4-0-0	4	4	50	50	100	3 hours
3	15EECC202	PC2: Analog Electronic Circuits	PC	4-0-0	4	4	50	50	100	3 hours
4	19EECC201	PC3: Digital Circuits	PC	4-0-0	4	4	50	50	100	3 hours
5	19EECC202	PC4: Signals & Systems	ES	4-0-0	4	4	50	50	100	2 hours
6	15EECP201	PCL1: Digital Circuits Lab	PC	0-0-1	1	2	80	20	100	2 hours
7	15EECP202	PCL2: Analog Electronic Circuits Lab	PC	0-0-1	1	2	80	20	100	2 hours
8	15EECF202 18EECF204	ES2: Microcontroller Architecture & Programming C Programming	ES	0-0-2	2	4	80	20	100	2 hours
тот	AL			20-0-	24	28	490	310	800	

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B (Basic Science) = B; ES (Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E;

PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T;

Apprenticeship = A; Laboratory / Practical = Field Work = D; and Non-credit course = N.


Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 14 of 120		
Electronics and Communication Engineering			Year: 2019-23

Semester: IV

No	Code	Course	Category	L-T-P	Credi	Conta Hours	ISA	ESA	Total	Exam Duration
1.	17EMAB208	BS: Linear Algebra &Partial Differential Equations	BS	4-0-0	4	4	50	50	100	3 hours
2.	18EECC209	ES4: Electromagnetic Fields and Waves	PC	3-0-0	3	3	50	50	100	3 hours
3.	19EECC203	PC5: Linear Integrated Circuits	PC	4-0-0	4	4	50	50	100	3 hours
4.	15EECC206	PC6: Control Systems	PC	4-0-0	4	4	50	50	100	3 hours
5.	15EECC207	PC7: ARM Processor & Applications	PC	3-0-0	3	3	50	50	100	3 hours
6.	15EECC208	PC8: Digital System Design using Verilog	PC	0-0-2	2	4	80	20	100	2 hours
7.	15EECP203	PCL3: Data acquisition and controls Lab	PC	0-0-1	1	2	80	20	100	2 hours
8.	15EECP204	PCL4: ARM Microcontroller Lab	PC	0-0-1	1	2	80	20	100	2 hours
9.	19EECF201 19EECF202	PCL3: Data Structure Applications Lab PCL3: Data Structure Lab(Diploma)	ES	0-0-2	2	4	80	20	100	2 hours
TOTA	AL .			18-0-6	24	28	570	330	900	

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T; Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

Semester: V

No	Code	Course	Category	L-T-P	Credit	Contact Hours	ISA	ESA	Total	Exam Duration
1	19EECC301	PC10:CMOS VLSI Circuits	PC	4-0-0	4	4	50	50	100	3 hours
2	21EECC302	PC11: Communication System I	PC	4-0-0	4	4	50	50	100	3 hours
3	17EECC303	PC12: Digital Signal Processing	PC	4-0-0	4	4	50	50	100	3 hours
4	17EECC304	PC13: Operating System & Embedded Systems Design	PC	3-0-0	3	3	50	50	100	3 hours
5	17EECP301	PCL5: Communication and signal processing Lab	PC	0-0-1	1	2	80	20	100	2 hours
6	17EECP302	PCL6: RTOS Lab	PC	0-0-1	1	2	80	20	100	2 hours
7	19EECP301	PCLx: CMOS VLSI Circuits Lab	PC	0-0-1	1	2	80	20	100	2 hours
8	17EECC307	PC15: Machine Learning	PC	2-0-1	3	4	50	50	100	3 hours
9	17EECW30 1	P1: Mini Project	PW	0-0-3	3	6	50	50	100	2 hours
тот	AL			17-0-7	24	31	540	36 0	900	

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E;

PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T;

Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 16 of 120
Electronics and Communication Engineering			Year: 2019-23

Semester: VI

No	Code	Course	Category	L-T-P	Credi	Conta Hours	_	ESA	Total	Exam Duration
1	16EHSC301	H3: Professional Aptitude and Logical reasoning.	НС	3-0-0	3	3	50	50	100	3 hours
2	17EECC305	PC13:Automotive Electronics	PC	3-0-0	3	3	50	50	100	3 hours
3	17EECC306	PC14:Computer Communication Networks	PC	4-0-0	4	4	50	50	100	3 hours
4	21EECC307	PC11: Communication System II	PC	3-0-0	3	3	50	50	100	3 hours
5	17EECEXXX	PSE Elective 1	PE	3-0-0	3	3	50	50	100	3 hours
6	17EECP303	PCL7: Computer Communication Networks Lab	PC	0-0-1	1	2	80	20	100	2 hours
7	17EECP304	PCL8: Automotive Electronics Lab	PC	0-0-1	1	2	80	20	100	2 hours
8	17EECW302	P2: Minor Project	PW	0-0-6	6	12	50	50	100	2 hours
тот	AL			16-0- 8	24	32	460	340	800	

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E;

PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T;

Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

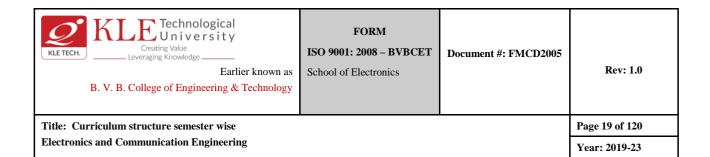
Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 17 of 120		
Electronics and Communication Engineering			Year: 2019-23

Elective VI (Batch 2019-23)

	Semester: VI									
No	Code	Course: PSE1: Elective	Category	L-T-P	Credit	Contac Hours	ISA	ESA	Total	Exam Duration
	17EECE301	Analog Circuits Design		0-0-3		6	100		0	
	19EECE322	Introduction to Deep Learning		2-0-1		4	50	50		
	17EECE302	Advanced Digital Logic Design		0-0-3		3	100	"		
PSE	17EECE307	Internet of Things		2-0-1		4	50	50		
Elective 1	21EECE308	Information Theory and Coding	PSE	3-0-0	3	3	50	50	100	3Hours
	17EECE310	Embedded Intelligence Systems		0-0-3	0	9	80	20		
	20EECE340	Multi core Architecture & Programming		2-0-1		4	50	50		
	18EECE421	OOPS using C++		2-0-1		4	50	50		

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 18 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Semester: VII


No	Code	Course	Category	L-T-P	Credits	Contac	ISA	ESA	Total	Exam Duration
1	22EECC401	PC16: Wireless & Mobile Communication	PSC	3-0-0	3	3	50	50	100	3 hours
2	18EECE	PSE Elective 1	PSE	3-0-0	3	3	50	50	100	3 hours
3	18EECE	PSE Elective 2	PSE	3-0-0	3	3	50	50	100	3 hours
4	18EECE	PSE Elective 3	PSE	3-0-0	3	3	50	50	100	3 hours
5	18EECE	PSE Elective 4	PSE	3-0-0	3	3	50	50	100	3 hours
6	20EECW401	P3: Senior Design Project	PW	0-0-6	6	12	50	50	100	3 hours
7	15EHSA401	<u>CIPE</u>	М	2-0-0		2	50	50	100	3 hours
TOT	AL			15-0-6	21	29	350	350	700	

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B (Basic Science) = B; ES (Engineering Science) = F; PC (Program Core) = C; EC (Any Elective) = E;

PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T;

Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

		Semester: VII (201	9-23 Batch)				
	Subject	Subject code	Theory	Practical	Credits	Remark	
Group-I Electives	Fabrication Techniques for MEMs-based sensors (Swayam)	22EECE430	0	3			
	Cryptography & Network Security (Swayam)	22EECE431	0	3	3	Select any one subject	
	Phase-locked loops(Swayam)	22EECE432	0	3		from Group-I	
	Computer Graphics (IITD-Online)	21EECE425	0	3			
					1		
	Advanced Computer Graphics(IITD + KLE Tech)	22EECE433	0	3			
	Advanced Computer Vision(IITD + KLE Tech)	22EECE434	0	3			
Group-II Electives	Advanced Digital Logic verification	18EECE418	0	3			
Electives	Multimedia Communication	18EECE410	3	0			
	Physical Design-Analog	18EECE419	0	3			
	OOPS with C++	18EECE421	2	1		Select any	
	CMOS ASIC Design	18EECE420	0	3	9	Three subject from	
	Embedded Linux	18EECE405	0	3		Group-II	
	Microwave & Antennas	18EECE411	3	0			
	AUTOSAR	20EECE406	3	0			
	Testing & Characterization	19EECE403	3	0			

No	Code	Course: PSE: Elective	Category	L-T-P	Credits	Contact Hours	ESA	ISA	Total	Exam Duration
1.	19EECE416	<u>Biosensor</u>		0-0-3		3	-	100	100	
2.	18EECE418	Advanced Digital Logic verification	PSE	0-0-3	3	6	1	100	100	3Hours

Earlier known as B. V. B. College of Engineering & Technology

FORM

ISO 9001: 2008 - BVBCET

School of Electronics

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering

Page 20 of 120

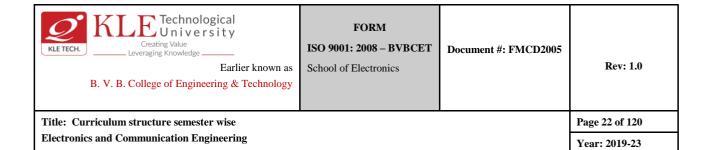
Year:	2019-23
-------	---------

3.	18EECE410	Multimedia Communication	3-0-0		3	50	50	
4.	18EECE419	Physical Design-Analog	0-0-3		6	-	100	
5.	18EECE409	<u>Design and Analysis of</u> <u>Algorithm</u>	0-0-3		3	50	50	
6.	18EECE420	CMOS ASIC Design	0-0-3		6	-	100	
7.	18EECE405	Embedded Linux	0-0-3		3	50	50	
8.	18EECE411	Microwave & Antennas	3-0-0		3	50	50	7
9.	20EECE406	<u>AUTOSAR</u>	3-0-0		3	50	50	
10.	18EECE415	Cryptography & Network Security	3-0-0		3	50	50	
11.	19EECE403	Testing & Characterization	0-0-3		6	- 1	100	
12.	17EECE310	Embedded Intelligent Systems	0-0-3		6	80	20	
13.	21EECE421	<u>RF VLSI</u>	3-0-0		3	50	50	
14.	21EECE422	Speech Processing	3-0-0	10	3	50	50	
15.	21EECE423	CAD for VLSI	3-0-0		3	50	50	
16.	21EECE424	System on Chip Design	3-0-0		3	50	50	
17.	22EECE423	Power Management Integrated Circuit	3-0-0		3	50	50	
18.	22EECE424	Virtualization and Cloud Computing	3-0-0		3	50	50	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 21 of 120		
Electronics and Communication Engineering	Year: 2019-23		

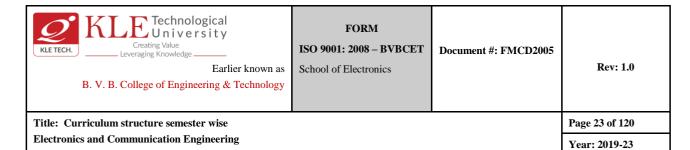
Semester: VIII

No	Code	Course	Category	L-T-P	Internship	Credits	Contact Hours		ESA	Total	Exam Duration
1	18EECE	PSE Elective 5	PSE	3-0-0		3	3	50	50	100	3 hours
2	18EECE	Open Elective 1	OE	3-0-0	6-0-0	3	3	50	50	100	3 hours
3	20EECW402	Project Work	PRJ	0-0-11		11	22	50	50	100	3 hours
TOTAL			6-0-11		17	28	150	150	300		


Internship- Training: 18EECI493 – 0-0-6, ISA: 50 ESA: 50 Internship- Project: 20EECW494-- 0-0-11, ISA: 50 ESA: 50

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E;

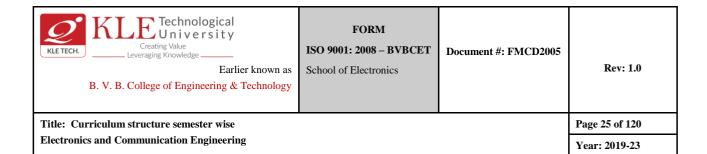

PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T;

Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

No	Code	Course: PSE5: Elective	Catego	L-T-P	Credit	Contac Hours	ISA	ESA	Total	Exam Duration
	18EECE414	<u>Digital Image Processing</u>		3-0-0	3	3				
	18EECE403	<u>MEMS</u>		3-0-0	3	3				
1.	19EECE422	Introduction to Deep Learning		2-0-1	3	4				
	18EECE402	Analog and Mixed Mode Circuits		3-0-0	3	3				3
	20EECE430	Multi core Architecture & Programming		2-0-1	3	4				

No	Code	Course: OE1s: Open Elective	Categor	L-T-P	Credi	Conta Hours	ISA	ESA	Total	Exam Duration
0.53	18EECO403	Automotive Electronics	OE 3-0-	3-0-0	•	2	Ε0	50	100	2110115
OE2	18EECO404	Embedded System	UE	3-0-0	3	3	50	50	100	3Hours

Program: I Semester Bachel	or of Engineering (Electronics & C	Communication Engineering)	Teaching			
Course Title: Basic Electronic	cs(Mechanical Science)	Course Code: 18EECF101	Hours			
L-T-P: 4-0-0	L-T-P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week					
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs					
Unit I Chapter 1: Overview of Electronics in Mechanical Engineering Definition & overview of Mechatronics, Mechatronics and Design Innovation, Mechatronics and Manufacturing, Mechatronics and Education; Typical Mechatronics Components; Sensors and Transducers.						
Chapter 2: Semiconductor D	evices and Applications:					
PN junction diode, characteristics and parameters, diode approximations, half wave rectifier, full wave bridge rectifier capacitor filter, Zener diode, Voltage regulator design, BJT, Darlington Pair, JFET, MOSFET, UJT, SCR.						
Chapter 3: Operational Amp	lifiers:	\(\sigma\)				
		rator, Inverting amplifier, Non-inverting, Subtractor and numerical as applicable.	08			
	Unit II	200				
Chapter 4: Digital Logic:						
Digital Number system: Binary & Hexadecimal number systems, Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra, Logic gates, Combinational &						


Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 24 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Chapter 5: Sensors and Transducers: Introduction, Classification of sensors and transducers, Contact type – Mechanical switches, Noncontact type - proximity sensors & Hall sensors, principle of working of light sensors, Future Challenges	06
Unit – III Chapter 6: Signal Conditioning: Analog & Digital signals, Digital to Analog Conversion, R-2R DAC, Analog to Digital Conversion, SAR ADC, Data Acquisition.	06
Chapter 7: Case Studies of Mechatronic Systems: Automatic Camera, Drilling Machine, Bar code reader.	04

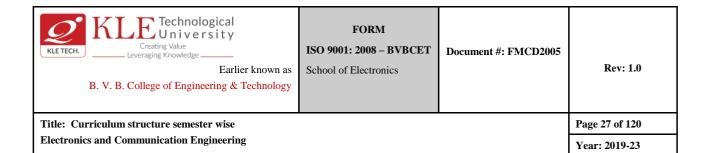
- 1. David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.
- 2. Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice Hall India, 2000.
- 3. W.Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", 3rd edition Pearson Education, 2005.
- 4. David Bradley and David W., "Mechatronics in Action", 2nd edition, Springer, 2010

References

- 1. David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measurement Systems", TMH 3rd edition, 2007.
- 2. K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- 3. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.
- 4. Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001
- 5. Boylestead Nashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice Hall India, 2000. RamakantGayekawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

Program: I Semester Bachelor of Engineering (Electronics & Communication Engineering)						
Course Title: Basic Electronics(Electrical Sc	Course Code: 18EECF102					
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs	0,3				

Content	Hrs					
Unit – 1						
Chapter 1: Basic components, devices and Applications Diode: PN junction characteristics; modeling as a circuit element, ideal and practical diode. AC to DC converter: Half wave and full wave rectifier (center tap and bridge), capacitor filter and its analysis, numerical examples. Zener diode and its applications (Voltage reference and voltage regulator). Realization of simple logic gates like AND and OR gates.	09 hrs					
Chapter 2: Transistor BJT, transistor voltages and currents, Signal amplifier (Fixed bias, Collector base bias, Voltage divider bias, CE configuration). DC load line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two Stage RC-coupled Amplifier).	11 hrs					
Unit – 2						
Chapter 3: Digital Logic Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Binary Operations-Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems, simplification of logical expressions, Karnaugh Maps, Use of Karnaugh Maps to Minimize Boolean Expressions (2 Variables, 3 Variables and 4 Variables), Design of Half Adder and Full Adder, Parallel Adder using full adders	13 hrs					
Chapter 4: Operational Amplifier OPAMP characteristics (ideal and practical). Concept of positive and negative feedback (At zero frequency). Linear and non-linear applications: Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	07 hrs					
Unit – 3						
Chapter 5: Communication Systems Basic block diagram of communication system, types of modulation. Amplitude modulation: Time-Domain description, Frequency-Domain description. Generation of AM wave: square law modulator. Detection of AM waves: envelope detector. Double side band suppressed carrier modulation (DSBSC), Generation of DSBSC wave: balanced modulator, Super heterodyne principle.	07 hrs					

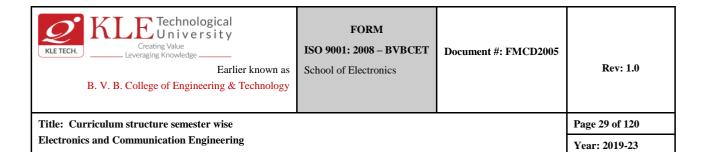

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 26 of 120		
Electronics and Communication Engineering	Vear: 2019-23		

Chapter 6: Linear Power Supply, UPS & CRO	03 hrs
Working principle of linear power supply, UPS and CRO. Measurement of amplitude, frequency and phase of	
a given signal.	ı

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for Scientist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References

- 1. George Kennedy, Electronic Communication Systems, 4, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design, 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. Ramakant Gaikawad , Operational Amplifiers & applications, 3, PHI, 2000


Program: III Semester Back	nelor of Engineering (Electronics & Cor	nmunication Engineering)	
Course Title: Integral trans	forms and Statistics	Course Code: 15EMAB203	T .
L-T-P: 4-0-0	Credits: 04	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
Unit I Chapter 1. Laplace Transforms Definition, transforms of elementary functions- transforms of derivatives and integrals- Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties- Convolution Theorem. Initial and Final value theorems, examples; Applications to differential equations, Circuit equations			10
· · · · · · · · · · · · · · · · · · ·	onditional probability, Baye's rule, Chek outions: Binomial, Poisson, Exponentia	· · · · · · · · · · · · · · · · · · ·	10
	Unit II		
Chapter 3: Regression: Introduction to method of regression. Engineering pro	least squares, fitting of curves y=a+bx,	y = ab ^x , correlation and	05
Chapter 4: Fourier Series			
Complex Sinusoids, Fourier series representations of four classes of signals, Periodic Signals: Fourier Series representations, Derivation of Complex Co-efficients of Exponential Fourier Series and Examples. Convergence of Fourier Series. Amplitude and phase spectra of a periodic signal. Properties of Fourier Series (with proof): Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties.			08
Chapter 6: Fourier Transform: Fourier representation of non-periodic signals, Magnitude and phase spectra. Properties of Fourier Transform: Linearity, Symmetry Properties, Time shift, Frequency Shift, Scaling, Time differential differentiation coefficients, Time domain Convolution, Multiplication Theorem, Parseval's theorem and Examples on these properties.		07	
	Unit III		
variance, covariance, c 2. Introduction to Rando autocorrelation funct	Probability Distributions, marginal correlation. om process, stationary process, mean	distribution, joint pdf and cdf, mean, n, correlation and covariance function, al Density: properties of the spectral	10

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 28 of 120
Electronics and Communication Engineering			Year: 2019-23

- 1. Kreyszig E., Advanced Engineering Mathematics, 10th edition, Wiley, 2015
- 2. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th edition, Sultan Chand & Sons, 2018
- 3. Walpole and Myers, Probability and Statistics for Engineers and Scientists, ; 9thedition , Pearson Education India, 2013.

References

- 1.Simon Haykin, Barry Van Veen, Signals and Systems Wiley; Second edition ,2007
- 2.J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th edition, TATA McGraw-Hill Edition, 2017
- 3. Ian Glover & Peter Grant, Digital Communications, 3rd edition, Pearson 2009.

Program: III Semester Bac	helor of Engineering (Electronics & C	Communication Engineering)	Teaching Hours
Course Title: Circuit Analy	sis	Course Code: 15EECC201	
L-T-P-SS: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	
ISA: Marks: 50	Marks: 50 ESA: Marks: 50 Total Marks: 100		
Teaching Hours: 50Hrs	Examination Duration:3 Hrs		
	Unit I It elements, Voltage & current sour er mesh, Star – Delta Transformatior	ces, Resistive networks, Nodal Analysis, Super	06
[Text 1: Chapter 4,5, 7]			
Chapter 2: Network Theo	prems	`	
Homogeneity, Superposition Theorem, Miller's theorem, [Text 1 : Chapter 5]		rton's Theorems, Maximum Power Transfer	08
	n matrix form, Solution of resistive ne	atrix, tie set and cut set schedules, Formulation etworks. [Text 1: Chapter 5]	04
	Unit II		
		nput and output impedance calculation, Series,) models.	06
	quency Domain Representation of Ci	rcuits	06
		ning equation, System Characteristic equation, nain representation) [Text 2: Chapter 4]	
Chapter 6: First order circ	uits		
Transient response of R-C	and R-L networks (with Initial condi	tions)	
1	nd high pass filters	racteristics, Polar plots e and frequency domain responses R-C ,	08
	Unit III		
Chapter 7: Higher order o	circuits		12
Phasor diagrams, Polar Quality factor, Frequency		circuit, Transient response, Damping factor, ency curve and its relation to damping factor,	

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 30 of 120
Electronics and Communication Engineering			Year: 2019-23

[T+ 2. Ch+ 7.0]	
[Text 2: Chapter 7,8]	
· · · · · · ·	

- 1. W H Hayt, J E Kemmerly, S M Durban, "Engineering Circuit Analysis" McGraw Hill Education; Eighth edition, 2013
- 2. M E. Van Valkenburg, Network Analysis, Third edition Pearson Education, 2019

Reference

- 1. Joseph Edminister, Mahmood Nahavi, Electric Circuits, 5th edition, McGraw Hill Education, 2017
- 2. V. K. Aatre, —Network Theory and Filter Design, 3rd edition, New Age International Private Limited, 2014

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 31 of 120
Electronics and Communication Engineering			Year: 2019-23

Course Title: Analog Elec	ctronic Circuits	Course Code: 15EECC202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		0
Chapter 1: Applications o			
signal model.		oltage drop model, ideal diode model, small	06
Applications of diodes a	s a Clipping circuit and clamping cir	cuits Voltage dubler. (T1 : 2.2,2.3.1 to	
2.3.8,2.6.1to 2.6.3.)			
operation-the transfer cl base- bias, collector to b transistors, two port mo	aracteristics, Dependence of Ic on a naracteristics, the amplifier gain, op ase bias, voltage divider, compariso deling of amplifiers, ac analysis of E	the collector voltage-the early effect large sign peration as a switch. DC load line and bias poin on of bias circuit, small signal models of bipola BJT circuits-coupling and bypass capacitor, ed emitter resistor. (T1: 3.1.1, 3.2.1,3.2.2, 3.2.3	ot, 07
3.3.4)			
Chapter 3: MOSFETs stru	acture and physical operation:	•	
operation as vds is complementary MOS or characteristics: circuit characteristics of the p-	increased, derivation of the ic CMOS, operating the mos transist symbol, the id vsvds characteris	a channel for current flow, applying small vold-vds relationship, the P-channel MOSFE or in the sub threshold region. Current-voltag stics, finite output resistance in saturation substrate-the body effect, temperature effects	Г, e n,
	Unit II		
Chapter 4: Biasing of MO	OSFETs		08
	iasing in mos amplifier circuits,By f ant current source biasing and Nun	ixing VGS By fixing VG;With drain to gate nerical	
Chapter 5: MOSFET amp	lifiers:		12
-		models, single stage MOS amplifiers, the	
	ance and high frequency model, fre : Implications on gain and Bandwid	equency response of CS amplifier. (CD and lth	

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 32 of 120
Electronics and Communication Engineering			Year: 2019-23

Unit III	05
Chapter 6: Feedback Amplifiers:	
General feedback structure (Block schematic), Feedback desensitivity factor, positive and negative feedback Nyquist stability Criterion, RC phase shift oscillator, wein bridge Oscr, merits of negative feedback, feedback topologies: series-shunt feedback amplifier, series-series feedback amplifier, and shunt-shunt and shunt-series feedback amplifier with examples (T1:7.1 to 7.6)	
Chapter 7: Large Signal Amplifiers: Classification of amplifiers: (A, B, AB and C); Transformer coupled amplifier, push-pull amplifier Transistor case and heat sink. (T1:12.1 to 12.6;12.8.4)	05

1. A.S. Sedra& K.C. Smith, "Microelectronic Circuits", 7th edition, Oxford University Press, 2017

Reference

- 1. JacobMillman and Christos Halkias,-Integrated Electronics "McGraw Hill Education, 2nd edition 2017
- 2. DavidA.Bell,-Electronic Devices and Circuits, Oxford Fifth edition 2008
- 3. Grey, Hurst, Lewis and Meyer, -Analysis and design of analog integrated circuits, Wiley, 5th edition 2009
- 4. Thomas L.Floyd,-Electronic devices ,Pearson, 10th edition, 2018
- 5. Richard R. Spencer & Mohammed S. Ghousi, Introduction to Electronic Circuit Design||, Pearson Education, 2003
- 6. J. Millman& A. Grabel, "Microelectronics"-2nd edition, McGraw Hill,2017
- 7. Behzad Razavi,-Fundamentals of Microelectronics, 2nd edition Wiley;2013

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 33 of 120
Electronics and Communication Engineering			Year: 2019-23

Program: III Semester Bach	elor of Engineering (Electronics & Co	mmunication Engineering)	
Course Title: Digital Circuits	5	Course Code: 19EECC201	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50 Hrs	Examination Duration: 3 Hrs		0
	Unit-l		1.9
Chapter No. 1. Logic Familie	es		03
Logic levels, output switchir	ng times, fan-in and fan-out, comparis	on of logic families	
Karnaugh maps-3,4 variable	l logic, canonical forms, Generation cles, Incompletely specified functions	of switching equations from truth tables, (Don't care terms), Simplifying Maxterm Cluskey using don't care terms, Reduced	10
Chapter No. 3. Analysis and	l design of combinational logic		
		altiplexers- Using multiplexers as Boolean dders, Look ahead carry adders, Binary	08
	Unit-II	70	
Chapter No. 4. Introduction	n to Sequential Circuits		
The gated SR Latch, The & Master-Slave SR Flip-Flops,	gated D Latch, The Master-Slave Fli	ortch, A Switch De bouncer, The SR Latch, p-Flops (Pulse-Triggered Flip-Flops): The Triggered Flip- Flop: The Positive Edgecteristic Equations	10
Chapter No. 5. Analysis of S	Sequential Circuits		
Registers and Counters, Binary Ripple Counters, Synchronous Binary counters, Ring and Johnson Counters, Design of a Synchronous counters, Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops Design of a Synchronous Mod-n Counter using clocked D, T or SR Flip-Flops.		10	
	Unit-III		
Chapter No. 6. Sequential C	Circuit Design		
-	Circuit Design, Mealy and Moore Mod cuit Analysis, Construction of state Dia		05
Chapter No. 7. Introduction	on to memories		
	mory in a computer system, memory PROM, EEPROM, Random access mem		04

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Page 34 of 120			Page 34 of 120
Electronics and Communication Engineering			Vear: 2019-23

- 1. Donald D Givone, Digital Principles and Design, McGraw Hill Education ,2017
- 2. John M Yarbrough, Digital Logic Applications and Design,1st editionCengage Learning, 2006
- 3. A AnandKumar, Fundamentals of digital circuits 4th Revised edition, PHI, 2016

References

- Charles H Roth, Fundamentals of Logic Design,7th edition ,Cengage Learning, 2015
- 2. ZviKohavi, Switching and Finite Automata Theory Cambridge University Press; 3 edition October 2009
- 3. R.D. Sudhaker Samuel, Logic Design, Pearson Education ,2010
- 4. R P Jain, Modern Digital Electronics, 4th edition, McGraw Hill Education, 2009

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 35 of 120
Electronics and Communication Engineering			Year: 2019-23

Program: III Semester Back	helor of Engineering (Electronics & C	ommunication Engineering)	
Course Title: Signals and S	ystems	Course Code: 19EECC202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	nouis
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
aperiodic, deterministic a operation on signals(inder reversal), elementary sig Interconnections(series, pa	systems, classification of signals, (and random signals, even and odd pendent variable, dependent variabnals (Impulse, step, ramp, sinusonarallel and cascade), properties of line		10
	d time invariance, stability, memory,	causality)	
Chapter No. 02: LTI Syste	•	4C)	
Impulse response representation and properties, Convolution, convolution sum and convolution			
integral. Differential and di	ifference equation Representation, B	lock diagram representation	10
	Unit II		
	-	xcluded) and their properties. Discrete rties	10
Chapter No. 04: Applicati	ons of Fourier transform		
$Introduction, frequency\ response\ of\ LTI\ systems,\ Fourier\ transform\ representation\ of\ periodic\ signals,$			10
Fourier transform represer	ntation of discrete time signals. Samp	ling of continuous time signals.	
	Unit III		
Chapter No. 05: Z-transfo	orm		
Definition of z-transform, Properties of ROC, Properties of Z-transforms: Inverse z-transforms (Partial Fraction method, long division method), Unilateral Z-transform, Transform of LTI.			10

Text Book (List of books as mentioned in the approved syllabus)

- 1. Simon Haykin and Barry Van Veen, Signals and Systems 2nd edition Wiley,2007
- 2. Alan V Oppenheim, Alan S Willsky and S. Hamid Nawab, Signals and Systems, Second, PHI public,1997

References

- 1. H. P Hsu, R. Ranjan, Signals and Systems, 2nd edition, McGraw Hill ,2017
- 2. Ganesh Raoand Satish Tunga, SignalsandSystems1st edition, Cengage India, 2017
- 3. M.J.Roberts, Fundamentals of Signals and Systems 2nd edition, McGraw Hill Education, 2017

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 36 of 120		
Electronics and Communication Engineering	Year: 2019-23		

III Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Digital Circuits Laboratory Experiments(15EECP201)				
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hours: 24Hrs	Contact Hours: 2Hrs/week	•	00	

List of Experiments:

- 1. Characterization of TTL Gates—Propagation delay, Fan-in, Fan-out and Noise Margin.
- 2. To verify of Flipflops (a) JK Master Slave (b) T-type and (c)D-Type
- 3. Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD code converters.
- 4. Design and implement BCD adder and Subtractor using 4 bit parallel adder.
- 5. Design and implement n bit magnitude comparator using 4- bit comparators.
- 6. Design and implement Ring and Johnson counter using shift register.
- 7. Design and implement mod-6 synchronous and asynchronous counters using flip flops.
- 8. Design and implement given functionality using decoders and multiplexers.
- 9. Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results on a general purpose PCB.
- **Note-All above experiments are to be conducted along with simulation.

*Digital Circuits Lab: Simulation of combinational and sequential circuits using netlist based Spice Simulators (Avoid using drag n drop), before implementing the circuits on breadboard.

Reference Books

- 1. K.A.Krishnamurthy-Digital labprimer, Pearson Education Asia Publications, 2003.
- 2. A.P. Malvino, -Electronic Principles 7th edition, McGraw Hill Education, 2017

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 37 of 120
Electronics and Communication Engineering			Year: 2019-23

III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Analog Electronics Laboratory Experiments(15EECP202)			
ISA Marks: 80	ESA Marks: 20 Total Marks: 100		
Teaching Hours: 24Hrs Contact Hours: 2Hrs/week			

Exercise

- 1. Design &Testing of Diode Clipping (single/double ended) circuits
- 2. Design & Testing of Clamping circuits for Positive and Negative Clamping.
- 3. Design &Testing of BJT as a switch
- 4. MOSFET characteristics
- 5. Design &Testing of MOSFET as a switch
- 6. Design and testing Current mirror circuit with MOSFET
- 7. Design and testing of Transformer-less push-pull class B power amplifier

Structured Enquiry

- 1. Design and study of single stage Common Emitter BJT amplifier.
- A) Design and study of CS Amplifier using MOSFET.
- B) Voltage series feedback

Open Ended

1. Design a regulated power supply for the given specifications.

Reference Books

- 1. "Electronic Devices & circuit Theory by Nashelsky & Boylstead,11th Edition, Pearson, 2015
- 2. "Integrated Electronics"—By_Jacob Millman and Christos Halkias ,McGraw Hill Education; 2nd edition 2017
- 3. "Electronic Principles" by A.P. Malvino,7th edition, McGraw Hill Education,2017

Back to III Sem

^{**}Note-All above experiments are to be conducted along with simulation.

^{*}Analog Electronic Circuits Lab: Simulation of MOSFET based circuits using netlist based Spice Simulators (Avoid using drag n drop), with the spice models of MOSFETs in the same netlist file before using hardware using bread board.

Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 38 of 120
Electronics and Communication Engineering			Year: 2019-23

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Laboratory Experiments			
Laboratory Title: Microcor	ntroller Architecture & Programming	Lab. Code: 15EECF202	
ISA Marks: 80 ESA Marks: 20		Total Marks: 100	
Teaching Hours: 52 Hrs	Contact Hours: 4 Hrs/week	Credits: 0-0-2	0,0

- 1. Write an 8051 ALP to verify data transfer, Arithmetic & Logical instructions.
- 2. Develop an 8051 ALP to perform code conversions.
- **3.** Develop an ALP to sort an array for a given order.
- 4. Develop an ALP to generate prime numbers.
- 5. Write an 8051 C program to toggle all the bits of P0 and P2 Continuously with a 250msdelay
- **6.** Write an ALP to generate prime numbers using subroutines.
- **7.** Write 8051 C-program to monitor bit P1.5. If it is HIGH send 55 to P0 otherwise send AA to P2 use directives to write the program.
- 8. Write a program to generate a pulse train of 2seconds period on pin P2.4. Use timer1(T1) in Mode-1
- 9. Write a program to generate Sine wave of frequency 1KHz on pinP1
- **10.** A square wave is being generated at pin P1.2. This square wave is to be sent to a receiver connected in serial form to 8051. Write a program to perform this operation.
- 11. Write a program to send a text string-Hell toserial#1. Set the baudrate at 9600,8-bit data and1-stopbit.
- 12. Write a C-program using interrupts to generate a 10KHz frequency on pin P2.1 usingTO.
- 13. Write a C'program& demonstrate an interfacing of LEDs to 8051.
- 14. Write a C'program& demonstrate an interfacing of Switches (Momentary type, Toggle type) to8051.
- **15.** Write a C'program& demonstrate an interfacing of Seven Segment Display: (Normal mode, BCD mode, Internal Multiplexing & External Multiplexing) to8051.
- $\textbf{16.} \quad \text{Write a C'program\&demonstratean interfacing of Alphanumeric LCD panel\&hexkey board to 8051 Microcontroller}.$
- **17.** Write a _C'program& demonstrate an interfacing of stepper motor and DC Motor to 8051Microcontroller.
- **18.** Build an 8051 microcontroller based application incorporating the digital circuits and should include at least two concepts of 8051 mentioned below
 - 1. Timers/counters
 - 2. Serial communication
 - 3. Interrupts

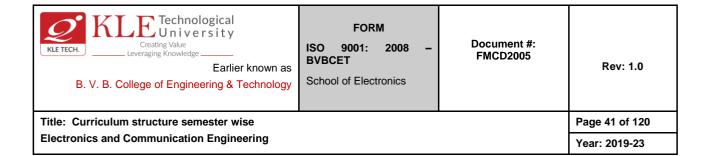
Books/References:

- "The 8051 Microcontroller Architecture, Programming & Applications " By _KennethJ.Ayala, Cenage Learning; 3rd edition 2007
- The 8051 Microcontroller and Embeddedsystems", by 'Muhammad Ali MazidiandJaniceGillespie Mazidi', 2nd edition, Pearson, 2007

Back to III Sem

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 39 of 120		
Electronics and Communication Engineering			Year: 2019-23

Course Title: Linear Alge Equations	ebra and Partial Differential	Course Code: 17EMAB208	Teaching
L-T-P-SS: 4-0-0-0	T-P-SS: 4-0-0-0 Credits: 4 Contact Hours: 4Hrs/week		Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	70
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I	. 07	V
Chapter1: Partial differe	ential equations		
Solution of partial diffe	erential equation by direct int ration of string-wave equation,	Solution of equation of the type Pp + Qq = R, regration methods, method of separation of heat equation. Laplace equation. Solution by	10
Chapter2: Finite differer	nce method		
Finite difference approxi	imations to derivatives, finite di	fference solution of parabolic PDE, explicit and	
implicit methods; Hyper	bolic PDE-explicit method, Ellipt	tic PDE-initial-boundary Value problems	10
	Unit II	0	
Chapter3: Fourier Series	;		
Series representations, Examples. Convergence of Fourier Series(with p Time differential differ	Derivation of Complex Co- of Fourier Series. Amplitude an proof): Linearity, Symmetry Pro	our classes of signals, Periodic Signals: Fourier efficient of Exponential Fourier Series and d phase spectra of a periodic signal. Properties operties, Time shift, Frequency Shift, Scaling, omain Convolution, Multiplication Theorem,	10
Chapter 4: Fourier Trans	sform		
Transform: Linearity, Sy	mmetry Properties, Time shif nts, Time domain Convolution,	tude and phase spectra. Properties of Fourier it, Frequency Shift, Scaling, Time differential, Multiplication Theorem, Parseval's theorem	10
	Unit III		
Chapter5: Complex anal	ysis		05
		ferentiability. Analytic functions, C-R equations inctions (Cartesian and polar forms).	05
in Cartesian and polar forms, construction of Analytic functions (Cartesian and polar forms). Chapter 7: Complex Integration Line integral, Cauchy's theorem- corollaries, Cauchy's integral formula. Taylor's and Laurent Series, Singularities, Poles, Residue theorem – problems.			05


Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 40 of 120
Electronics and Communication Engineering			Year: 2019-23

Text Book

- 1. Simon Haykin, Barry Van Veen, Signals and Systems, 2nd edition, Wiley, 2007
- 2. Peter V. O'neil, Advanced Engineering Mathematics Cengage Learning Custom Publishing; 7th Revised edition2011
- 3. Dennis G Zilland Michae I R Cullin," Advanced Engineering Mathematics",4th edition, Narosa Publishing House, New Delhi,2012

References

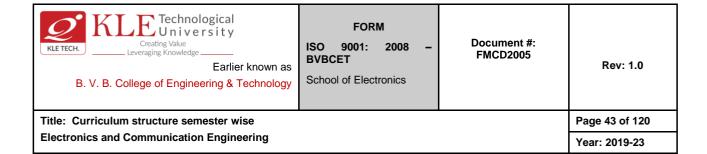
- 1. Kreyszig E., Advanced Engineering Mathematics, 10th edition, Wiley, 2015
- Stanley J Farlow, Partial differential equations for Scientists and Engineers, Dover publications, INC, New York,1993

Program: IV Semester B	achelor of Engineering (Electronic	s & Communication Engineering)	
Course Title: Electromag	gnetic Fields and Waves	Course Code: 18EECC209	Tooching
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	Teaching Hours
ISA Marks: 40	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content		Hrs
	Unit – 1		
Chapter No. 1. Introduct	tion to Electromagnetic (EM) Wav	es	08
		asic quantities and laws of electromagnetic, e and surface current, boundary conditions at	
Chapter No. 2. Uniform	Plane Wave		07
Homogeneous unbound equation, uniform plane		narmonic fields, solution of the wave	
	Unit - 2		
Chapter No. 3. Uniform	Plane Wave Propagation		08
	propagation in conducting mediu urface current & power loss in a co	m, skin depth, phase velocity of a wave, power onductor	
Chapter No. 4. Plane Waves at Media Interface			07
	lirection, plane wave at dielectric i nal and oblique incidence of plane	nterface, reflection and refraction of waves at waves, Brewster's Angle	
	Unit - 3		
Chapter No. 5. Radio Wa	ave Propagation		10
Chapter No. 5. Radio Wave Propagation Modes of propagation, surface wave propagation, space wave of lonospheric propagation, structure of troposphere and ionosphere, characteristic of lonospheric layers, wave bending mechanism, sky wave propagation, critical frequency, virtual height, MUF, skip distance, duct propagation, fading, multi-hop propagation.			

Text Book (List of books as mentioned in the approved syllabus)

- 1. William Hayt. Jr. John A. Buck, Engineering Electromagnetics ,9thedition, McGraw Hill Education,2018.
- 2. John D. Kraus, Ronald J. M.and Ahmad S. Khan, Antennas and Wave Propagation McGraw Hill Education, Fifth edition, 2017

References


- EdwardC.JordanandKeithGBalmain,-ElectromagneticWavesAndRadiating Systems, Pearson Education, Second edition, 2015
- 2. R. K. Shevgaonkar, Electromagnetic Waves McGraw Hill Education; 1st edition, 2017
- 3. Mathew N. O. Sadiku, Elements of Electromagenics; Sixth edition, Oxford University, 2015
- 4. David J. Griffiths, Introduction to Electrodynamics Pearson Education,4th edition,2015

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 42 of 120
Electronics and Communication Engineering			Year: 2019-23

- 5. J A Edminister, Electromagnetics, , 2nd edition, McGraw Hill ,2017
- 6. DavidKCheng,-FieldandWaveElectromagnetics Pearson Education India; 2 edition 2014
- 7. John Krauss and Daniel A. Fleisch,-Electromagnetics with Applications 5th edition, McGraw Hill Education,2017
- 8. K.D.Prasad,-Antenna & Wave Propagation, Satyaprakash Publications,2009

Back to IV Sem

Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Program: IV Semester Bac	helor of Engineering (Electronics & C	ommunication Engineering)	
Course Title: Linear Integr	ated circuits	Course Code:19EECC203	Teaching
L-T-P: 4-0-0	Credits: 4 Contact Hours: 4Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter No 1. Current Mir	rors		
Current Mirror circuits, Cu swing), Widlar, Cascode and		s of merit (output impedance, voltage	4
Chapter No 2 Basic OPAN	//P architecture		
•		node gain, CMRR, 5-pack differential limitation, Bandwidth and frequency	
Chapter No 3. OPAMP characteristics Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance, output Offset voltage, Small signal and Large signal bandwidth.			8
	Unit II		
Chapter No 4. OPAMP with Feedback OPAMP under Positive and Negative feedback, Impact Negative feedback on Bandwidth, Input and Output impedances, Offset voltage under negative feedback, Follower property & Inversion Property under linear mode operation			
Chapter No 5. Linear appl	ications of OPAMP		
DC and AC Amplifier, Summing, Scaling and Averaging amplifiers (Inverting, Non-inverting and Differential configuration), Instrumentation amplifier, Integrator, Differentiator, Active Filters –First and second order Low pass & High pass filters. V to I and I to V converters.			
	Unit III		
Chapter No 6. Nonlinear ap	oplications of OPAMP		
generators, Waveform gen Oscillator, Wein Bridge Osc	erator, Voltage controlled Oscillator,	r circuits, Triangular/rectangular wave Sample and Hold circuits, Phase Shift alog Converters: Weighted resistor R - nverters: Flash, Pipeline ADC, SAR	

Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 44 of 120
Electronics and Communication Engineering			Year: 2019-23

Text Book

- 1. BehzadRazavi, Fundamentals of Microelectronics 2nd edition, Wiley, 2013
- 2. Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design 3rd edition, OUP USA,2012
- 3. Ramakant A. Gayakwad, Op Amps and Linear Integrated Circuits,. Pearson Education, 4thedition, 2015

References

- 1. A.S. Sedra& K.C. Smith, MicroelectronicCircuits, 7th edition, Oxford University Press 2017
- 2. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, , 3rd edition , MHE ,2012
- 3. David A. Bell, Operational Amplifiers and LinearIC's.; Third edition, Oxford University Press, 2011
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits, Second edition, McGraw Hill Education; 2017

Back to IV Sem

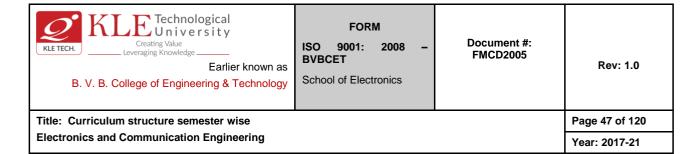
B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 45 of 120
Electronics and Communication Engineering			Year: 2019-23

Program: IV Semester Bac	helor of Engineering (Electronics & Co	mmunication Engineering)	
Course Title: Control Syste	ems	Course Code: 15EECC206	
L-T-P: 4-0-0	T-P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week		Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	liouis
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter No. 1. Control Sys	tem Representation		
Examples, System represer		rol Systems, Feed-Back characteristics, er function, Impulse response, System Mechanical Systems.	6
Chapter No. 2. Block Diagr	am And Signal Flow Graphs		
Transfer Functions, Block D Mason's Gain Formula.	piagram Algebra and Representation b	y Signal Flow Graph - Reduction Using	8
Chapter No. 3. Time Respo	nse Analysis		
Standard Test Signals (impulse, step, ramp, parabola)-Order and Type of System, Concept of Dominant pole, Time Response of First Order Systems – Characteristic Equation of Feedback Control Systems, Transient Response of Second Order Systems - Time Domain Specifications – Steady State Response - Steady State Errors and Error Constants – Effects Of Proportional Derivative, Proportional Integral Systems			6
	Unit II		
Chapter No. 4. Stability Ana	alysis In S-Domain		
The Concept Of Stability (BIBO, all system poles on LHS, Impulse response is convergent, Marginal stability- necessary conditions) — Routh's Stability Criterion — Limitations of Routh's Stability Criterion (Applications only).Root Locus Technique: The Root Locus Concept - Construction Of Root Loci.			10
Chapter No. 5. Frequency	Response Analysis		
Introduction, Bode Diagrams-Determination Of Frequency Domain Specifications And Transfer Function From The Bode Diagram-Phase Margin And Gain Margin-Stability Analysis From Bode Plots, All Pass And Minimum Phase Systems			10
	Unit III		
Chapter No. 6. Stability Ana	alysis In Frequency Domain		
Polar Plots, Nyquist Plots Stability Analysis, Assessment Of Relative Stability Using Nyquist Criterion.			6
Chapter No. 7. Introductio	n to Controller Design		
The Design Problem. Preliminary Consideration Of Classical Design, Realization Of Basic Compensators (Lag, Lead and dominant pole compensation), P, I, PI, PD & PID Controllers.			6

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 46 of 120
Electronics and Communication Engineering			Year: 2019-23

Text Books


- J. Nagrath and M. Gopal, Control Systems Engineering; Sixth edition, New Age International Pvt Ltd 2018 1.
- B. C. Kuo , Automatic Control Systems, 9^{th} edition, John wiley and Sons, 2014 2.

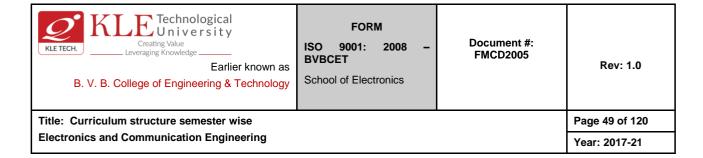
References

- Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson education India Pvt. Ltd,2015, 1.
- Richord C Dorf and Robert H. Bishop, Modern Control Systems, 13th edition, Pearson; 2016 2.

Back to IV Sem

Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: ARM Processor & Applications Course Code: 15EECC207			Teaching
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours
ISA Marks: 50	ESA Marks: - 50	Total Marks: 100	
Teaching Hours: 40Hrs	Examination Duration: 3 Hrs		6 5


Content	
Unit I	
Chapter 1: Introduction to Microprocessor and Microcontroller	
Microprocessor, Microcontroller, Comparing Microprocessor and Microcontroller, RISC vs. CISC, Von-	
Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller,	10
Case study:	
Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively	
Chapter 2: ARM Architecture	
Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM	
development tools, 3 stage pipeline ARM organization, ARM instruction execution.	06
Chapter 3: Instruction set 1	- 06
Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example	
programs	
Data processing instruction, Branch instruction, Load store instruction, Software interrupt	06
instruction, Program status register instruction, Conditional execution, Example programs	
Unit II	
Chapter 4: Instruction set 2	
The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions,	
Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and	
Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction,	
Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb	
implementation, and Thumb applications example programs.	
	05
Chapter 5: Assembler rules and Directives	
Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features.	03
Chapter 6: Exception handling	
Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	05
Chapter 7: Architectural support for high level languages	
Abstraction in software design, data types, floating point data types, The ARM floating point	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 48 of 120
Electronics and Communication Engineering			Year: 2017-21

architecture, use of memory, run time environment	05		
Unit – III Chapter 8: LPC 2129/2148 Controller Architectural overview			
On-chip memory, GPIOs, Timers, UART, ADC, I2C, SPI , RTC ARM interfacing techniques and programming: LED, LCD, Stepper Motor, Buzzer, Keypad, ADC			

Text Book:

- The 8051 Microcontroller Architecture, Programming & Applications " By _KennethJ.Ayala, Cenage Learning; 3rd edition 2007
- 2. ARM System- on-Chip Architecture by SteveFurber', SecondEdition, Pearson, 2015
- 3. ARM Assembly Language fundamentals and Techniques by William Hohl, CRC press CRC Press; 2nd edition, 2014 **References:**
- 1. -ARM system Developer's Guide -

Cours	se Title: Digital System De	sign using Verilog	Course Code: 15EECC208	Lab+
L-T-P:	: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Teaching
ISA M	larks: 80	ESA Marks:20	Total Marks: 100	Hours
Teach	ning + Lab. Hours: 48 Hrs	Examination Duration:3 Hrs		0,0
1.	Introduction to verilog:			02+02
	Verilog as hdl, levels of	design description, simulation	and synthesis, digital design flow.	
2.	Programming on Data f	low description:		02+02
	Structure of data-flow d		s. Simple combinational circuit design like	
3.	3. Programming on Behavioral Descriptions:			04+04
	-	nighlights, sequential statemer oth multiplier. Introduction to	nts. Introduction to Test bench. Design of FPGAs, Synthesis	
4.	Programming on Struct	ural Descriptions:	~()	02+02
		Description, Organization of the eneric, statements. Design of 1	e structural Descriptions, state 6 bit RCA and CLA	
5.	Programming on Tasks	and Functions:		04+04
	Highlights of Tasks, and Sequence Detector.	Functions, FSM, design like co	unter, Mealy and Moore machine,	
6.	Programming on Interfa	acing:		04+04
	Interfacing with 7-segm display.	ent display and push buttons.	Interfacing with PS/2 Keyboard and VGA	
7.	Programming on Advanced HDL Descriptions:			02+04
	Block RAMs on an FPGA Verilog, File processing	and understand memory inte examples.	rfacing, File operations in	
8.	Open ended Experimen			06
	Bowling Score Keeper / Floating Point Unit Arithmetic Units/pipelined processor/traffic light controller			

Text Book

- 1. Nazeih M. Botros, HDL Programming Verilog, Dreamtech Press, 2006.
- 2. J.Bhaskar, -AVerilog Primer",; 3rd edition, Pearson Education India ,2015

References

- 1. SamirPalnitkar,-Verilog HDL||, PearsonEducation, 2ndEdition, 2003.
- 2. Thomas and Moorby, -The Verilog Hardware Description Language | , kluwer academic publishers, 5 the dition, 2002.
- 3. Stephen Brown and Zvonko Vranesic,-Fundamentals ofLogicDesign with Verilog; 2nd edition, McGraw Hill Education 2017.
- 4. Charles.H.Roth,Jr.,Lizy Kurian John-Digital System Design using VHDL,Thomson, 2ndEdition,2008.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 50 of 120
Electronics and Communication Engineering			Year: 2017-21

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Data Acquisition and Control Lab Course Code: 15EECP203			
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week	
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours: 28 Hrs	Examination Duration: 2 Hrs		

1.Basic Signal Conditioning Techniques

- a) Inverting and Non Inverting Amplifier using OPAMP.
- **b)** Comparator. (ZCD &Schmitt trigger)
- c) Precision rectifier
- 2. Realize and verify the performance of Instrumentation Amplifier using op-amp
- 3. Feedback Concepts: Realize and verify the performance of Wein Bridge Oscillator using op-amp
- 4. To design and implement the filters for a given specification

Obtain the phase and frequency responses of 2nd order, Low pass and High pass filter.

5. To implement and characterize the functional block of ADC and DAC.

Realize the following data converters to determine their respective performance parameters.

- 4-bit R-2R D-A Converter.
- 2-Bit flash ADC/4-Bit ADC (Using0804IC

6. System Modeling

• Realize the system modeling for DC Motor using Quanser Qube

7. To determine System Response of RLC circuits

Time domain response of an RLC network and the response parameters of interest (Rise time, Peak overshoot, Overshoot and Settling time) for critical, over and under damped conditions using Lab view.

Time response using Quanser Qube

8. Stability Analysis

To determine the stability of the system depending upon Pole - Zero location.

To determine the stability of the system using Bode Plots.

9. Compensation Techniques

To determine suitable compensator for the given system (PD, PI, PID Controller using Quanser Qube).

10. Structured Enquiry (16+16=32marks)

MOS Amplifier Design and implementation

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 51 of 120 Year: 2017-21

Design and implement a PD control system using Co-simulation.

Text Books:

- 1. Ramakant Gayakwad, Operational Amplifiers and Linear Integrated Circuits; Fourth edition Pearson Education, 2015
- 2. Sergio Franco Design with Op-amps and Analog Integrated circuits, MHE; third edition, 2012

References:

- 1. Dan Sheingold Analog to Digital Conversion Hand Book, 3rd Revised edition PH,1986. Prentice Hall,1985
- 2. David A. Bell, Operational Amplifiers and LinearIC's.; Third edition, Oxford University Press, 2011
- 3. Sedra and Smith Microelectronics Circuits, Sixth edition, Oxford University, 2013

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 52 of 120
Electronics and Communication Engineering			Year: 2019-23

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
ARM Microcontroller Laboratory Experiments(15EECP204)				
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100				
Teaching Hours: 28Hrs Examination Duration: 2 Hrs Contact Hours: 2Hrs/week				

- 1. Writeaprogramthatdisplaysavalueof_Y'atport0and_N'atport2andalsogeneratesasquarewaveof 10Khz with Timer 0 in mode 2 at port pin p1.2 XTAL=22MHz
- 2. Write a C program that continuously gets a single bit of data from P1.7 and sends it to P1.0 in main, while simultaneously creating a square wave of 200us period on pin P2.5. ii. Sending letter A' to serial port. Use Timer Oto create square wave..
- 3. Write an ALP to achieve the following arithmetic operations: i. 32 bit addition ii. 64 bit addition iii. Subtraction iv. Multiplication v. 32 bit binary divide
- 4. Write an ALP for the following using loops: i. Find the sum of N' 16 bit numbers ii. Find the maximum/minimum of N numbers iii. Find the factorial of a given number with and without look up table.
- 5. Write an ALP to i. Find the length of the carriage r1eturn terminated string. ii. Compare two strings for equality
- 6. Write an ALP to pass parameters to a subroutine to find the factorial of a number or prime number generation
- 7. Write a _ C' program to test working of LED's usingLPC2148.
- 8. Write a _ C' program& demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148 Microcontroller.
- 9. WriteanALPtogeneratethefollowingwaveformsofdifferentfrequenciesi.Squarewaveii. Triangular
- a. iii. Sine wave
- 10. Write a _C' program & demonstrate interfacing of buzzer to LPC2148(using external interrupt)
- 11. Write a program to set up communication between 2 microcontrollers using I2C.
- 12. Write a _C' program & demonstrate an interfacing of ADC
- 13. Develop an ARM based application using i. sensors ii. actuators iii. Displays

Text Books

- 1. Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE,2002
- 2. The 8051 Microcontroller Architecture, Programming & Applications " By KennethJ.Ayala, Cenage Learning; 3rd edition 2007
- 3. William HohlARM Assembly Language fundamentals and Technique by, CRC press CRC Press; 2nd edition ,2014

Reference Books

- 1. -ARM systemDeveloper'sGuid- Hardbound,Publicationdate: 2004Imprint: MORGANKAUFFMAN
- 2. User manual onLPC21XX.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 53 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			Lab+	
Course Title: Data Structures Application Lab Course Code: 19EECF201		Teaching Hours		
L-T-P:	0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Hours
ISA M	arks: 80	ESA Marks:20	Total Marks: 100	
Teach	ing + Lab. Hours: 48 Hrs	Examination Duration:2 Hrs		
 Hashing Hash, Hash function, Hash Table, Collision resolution techniques, Hashing Applications 			12Hrs	
2. Trees Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree, 2-3 Tree			20Hrs	
3.	3. Graphs Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals			16Hrs

Back to IV Sem

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India)

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 54 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Program: V Semester Bach	elor of Engineering(Electronics & (Communication Engineering)	Teaching
Course Title: CMOS VLSI Circuits Course Code: 19EECC301		Course Code: 19EECC301	Hours
L-T-P: 4-0-0	Credits: 04	Contact Hours: 6 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 72 Hrs	Examination Duration: 3 Hrs		
	Content		
Unit I Chapter No. 1. Introduction	n to VLSI and IC fabrication techno	ology	
Introduction to Unit Proc technology - Silicon gate p FinFET device, The root cau	cesses (Oxidation, Diffusion, Deprocess, n-Well process, p-Well process, p-Well process in twe	o, Czochralski method of growing Silicon, position, Ion-implantation), Basic CMOS ocess, Twin-tub Process, Oxide isolation. nty-first century MOSFETS, The thin body SFETs, Ultra-thin body FET, Recent trends	08
Chapter No. 2. Electronic A	nalysis of CMOS logic gates		
models. Transient Analysis Transient Performance, Sw	of CMOS Inverter, NAND, NOR a	Effects, Noise Margin, MOS capacitance and Complex Logic Gates, Gate Design for Estimation, Elmore Delay Model, Power asistors, Tristate Inverter.	14
	Unit II		
Chapter No. 3. Design of CI	MOS logic gates		06
Stick Diagrams, Euler Path,	Layout design rules, DRC, Circuit e	xtraction, Latch up – Triggering Prevention	
-	ombinational Logic Networks	. , 55 5	
	·	tion in an Inverter Cascade, Logical effort Dual-rail Logic Networks: CVSL, CPL.	. 14
	Unit – III		
Chapter No. 5. Sequential (CMOS Circuit Design		08
Sequencing static circuits	, Circuit design of latches and flip- distribution.	flops, Clocking- clock generation, clock	

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India)

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 55 of 120		
Electronics and Communication Engineering			Year: 2019-23

Text Books (List of books as mentioned in the approved syllabus)

- 1. John P. Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- 2. Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 4, Pearson Ed 2011
- 3. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3, Tata McGra, 2007

References

- 1. FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard By Yogesh Singh Chauhan, Darsen Duane Lu, VanugopalanSriramkumar, SourabhKhandelwal, Juan Pablo Duarte, NavidPayvadosi, Ai Niknejad, Chenming Hu, Elsevier Publication, 2015
- 2. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed,2005
- 3. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3rd edition, PHI,2005
- 4. Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 3rd edition, Oxford University, 2011

Back to V Sem

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India)

Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum structure semester wise Page 56 of 1				
Electronics and Communication Engineering			Year: 2019-23	

Program: V Semester Bac	chelor of Engineering (Electronics & o	Communication Engineering)	Teachin
Course Title: Communica	tion Systems I	Course Code: 21EECC302	Hours
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content		
	Unit – 1		Hours
Chapter 01. Analog Com	munication Techniques:		
description. Generation envelope detector. Doul waves: balanced modulat Quadrature carrier mult description of SSB modula	of AM wave- square law modulato ole side band suppressed carrier n or. Coherent detection of DSBSC mod iplexing. Single side band modulate ated Signals-Generation, detection.	tion, Frequency-Domain and time-domain	14 Hours
	modulation techniques, Frequency of	livision multiplexing (FDM).	
Chapter 02. Receiver and Radio receivers: Tuned reselection of IF. Block diag		erodyne receiver Sensitivity and selectivity, Receiver.	06 Hours
	Unit – 2		
Deviation, Narrow and Transmission band width	Wide band frequency modulation	equency modulation, Phase and frequency . Spectrum and phase diagram of FM n index on bandwidth, Generation of FM	08 Hours
and PDF, Random Proce function, Cross-correlatio	ess- Stationary, Mean, Correlation a	bles-average, variance, CDF, PDF, Joint CDF and Covariance functions., autocorrelation Properties of the spectral density, Gaussian es.	
noise, White noise. Frequ superposition of Noises,	uency domain representation, Éffect Noise equivalent bandwidth, Quadi	of filtering on Gaussian noise, Mixing and rature components of noise, Narrowband nodel, Noise in AM Receivers, Noise in FM	06 Hours
	Unit - 3		
		Quadrature sampling of Band pass signals, on Multiplexing (TDM) Signal distortion in	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 57 of 120 Year: 2019-23

Text book:

- 1. "Communication Systems" by 'Simon Haykin' John Wiley 2003. 5th edition , 2009
- 2. "Principles of communication Systems", by Taub & Schilling, 2nd edition, TMH.
- 3. "Digital communications", Simon Haykin, John Wiley, 2006

References

- 1. Communication Systems, by B.P.Lathi,
- 2. Ganesh Rao, K N Haribhat, Analog Communication, Sanguine, 2009
- 3. Communication Systems by Harold. P.E, Stern Samy. A. Mahmond, Pearson Education, 2004.
- 4. Electronic communication systems, Kennedy and Davis, TMH, Edn. 6, 2012

Back to V Sem

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 58 of 120		
Electronics and Communication Engineering			Year: 2019-23

-		cs & Communication Engineering)	Teaching
Course Title: Digital Signal P	rocessing	Course Code: 17EECC303	Hours
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs	s	
Con	tent		
Uni	it – 1		
Chapter No. 1. Discrete Four	rier Transforms		
Transforms (DFT): Frequenc linear transformation, its re	cy domain sampling and recelationship with other transfo	properties and applications. Discrete Fourier onstruction of discrete time signals. DFT as a corms. Properties of DFT, multiplication of two, use of DFT in linear filtering, overlap-save and	12
Chapter No. 2. Fast-Fourier-	Transform (FFT) algorithms		
the DFT (i.e. FFT algorithms),		ation of DFT, Need for efficient computation on the computation of DFT and IDFT: Decimation-in the FFT.	
Uni	it – 2		
Chapter No. 3. Design of Dig	gital FIR Filters		
filters: symmetric and anti-	-symmetric FIR filters, desig ning, Hanning, Bartlet and Ka	tics of practical digital filters. design of digita n of linear phase FIR filters using windowing siser windows. Design of linear phase FIR filters	10
Chapter No. 4. Design of IIR	filters from analog filters		
transformation, Characterist frequency transformation in	tics of commonly used anal the digital domain.	derivative, impulse invariance method, bilinea og filters: Butterworth and Chebyshev filters	
Uni	it – 3		
Chapter No. 5. Realization o	=		
	systems: structures for FIR sice structure, Comparison of t	systems: direct form I, direct form II, cascad the realization techniques.	e, 05
Chapter No. 6. Realization o	f Digital IIR Systems		
Structures for IIR systems - d of the realization techniques		sscade, parallel and lattice structure, Comparisc	on <mark>05</mark>

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 59 of 120 Year: 2019-23

Text Books

- 1. Proakis & Manolakis, Digital signal processing Principles Algorithms & Applications, 4th edition, PHI, New Delhi,2007
- 2. S.K. Mitra, Digital Signal Processing, 2nd edition, Tata Mc-Graw Hill,2004

References

1. Oppenheim& Schaffer, Discrete Time Signal Processing, 5th edition, PHI, New Delhi, 2000

Back to V Sem

Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum structure semester wise Page 60 of 120				
Electronics and Communication Engineering			Year: 2019-23	

Program: V Semester Bachelo	or of Engineering (Electronics & C	ommunication Engineering)	
Course Title: Operating Sys Design	tem and Embedded System	Course Code: 17EECC304	Teaching
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs		
	Unit I		
and related functions. Classes	Goals of an operating system. Operating an operating system.	peration of an os. Resource allocation ng System Services. System Calls and ernels, Modules and Hybrid systems.	03
Chapter 2: Process Managem			
scheduler- preemptive schedu	-	nunication, process scheduling- CPU ng algorithms- first come first served and robin scheduling.	05
Chapter 3: Memory Managen	nent		06
Memory Management Strategies: process address space static vs dynamic loading. Swapping, memory allocation; fragmentation Paging; Structure of page table; Segmentation, Virtual Memory.			
	Unit II		•
Chapter 4: Introduction To Re	eal-Time Operating Systems		08
embedded system- real tim embedded systems. Introduc RTOS kernel, objects, schedu	e systems, characteristics of retion to RTOS, key characteristics	at to OS, Introduction to real time al time systems and the future of s of RTOS, its kernel, components in heduling types: Preemptive priority-	
Chapter 5: Tasks, Semaphore	s and Message Queues:		
Tasks, Semaphores and Message Queues: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO order, broadcasting messages.			08
	Unit III		
Chapter 6: Typical Embedded	System:		05
	of embedded system, Characters components of embedded system	and Quality attributes of embedded , Embedded firmware	
		protocol (USB,I2C,SPI), Wireless and ZigBee), Embedded design cycle-case	05

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering		Page 61 of 120 Year: 2019-23	

Text Books

- 1. Silberschatz ,Galvin and Gagne ,||Operating system concepts||,9th edition, WILEYPublication,2018.
- 2. Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems, 1E, Published, 2011
- 3. Shibu K V,||Introductionto Embedded systems||,2nd edition, McGraw Hill Education India Private Limited,2017
- 4. Raj Kamal, | Embedded Systems ||, Paperback, 3rd edition, McGraw-Hill Education, 2017

References

 DhananjayDhamdhere,||Operating Systems a Concept Based Approach||,3rd edition, McGraw-HillEducation,2017

Back to V Sem

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 62 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Introduction what is machine learning? Applications of machine learning, types of machine learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	Program: V Semester Ba	chelor of Engineering (Electronics	& Communication Engineering)	
Teaching Hours: 50	Course Title: Machine Le	arning	Course Code: 17EECC307	
Content Unit - 1 Chapter No. 1. Introduction Introduction what is machine learning? Applications of machine learning, types of machine learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit - 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit - 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	L-T-P: 2-0-1	T-P: 2-0-1 Credits: 3 Contact Hours: 4 Hrs/week		
Chapter No. 1. Introduction Introduction what is machine learning? Applications of machine learning, types of machine learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Unit – 1 Chapter No. 1. Introduction Introduction what is machine learning? Applications of machine learning, types of machine learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
Chapter No. 1. Introduction Introduction what is machine learning? Applications of machine learning, types of machine learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and		Content		
learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction		Unit – 1		Hrs
learning: supervised, unsupervised and reinforcement learning, dataset formats, basic terminologies. Chapter No. 2. Supervised Learning Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	Chapter No. 1. Introduct	ion		
Linear regression, logistic regression linear regression: single and multiple variables, sum of squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	learning: supervised, ເ			05
squares error function, the gradient descent algorithm, application, logistic regression, the cost function, classification using logistic regression, one-v/s-all classification using logistic regression, regularization. Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	Chapter No. 2. Supervise	d Learning		
Unit – 2 Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	squares error function, t function, classification us	the gradient descent algorithm, a	pplication, logistic regression, the cost	10
Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and		Unit – 2		
network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application- Classifying digits, SVM. Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and 04	Chapter No. 3. Supervise	d Learning: Neural Network		
Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and 04				
Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and 04	Classifying digits, SVM.			
Introduction, K means clustering, algorithm, cost function, application. Unit – 3 Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and	· ·	•		05
Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and 04	Introduction, K means clu	ustering, algorithm, cost function, a	application.	
Dimensionality reduction, PCA- principal component analysis, applications, clustering data and		Unit – 3		
principal component analysis, applications, clustering data and	· ·	•		
		n, PCA- principal component ana	lysis, applications, clustering data and	04

Text Book

- 1. Tom Mitchell, Machine Learning, 1st edition, McGraw-Hill., 2017
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2nd printing 2011 edition

References

1. Video lectures by: Andrew Ng, Co-founder, Coursera; Adjunct Professor, Stanford University; formerly head of Baidu Al Group/Google Brain

https://www.coursera.org/learn/machine-learning#

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise		Page 63 of 120	
Electronics and Communication Engineering			Year: 2019-23

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition, Springer, 9th printing 2017 edition

Back to V Sem

Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	Earlier known as ISO 9001: 2008 - BVBCET		Rev: 1.0
Title: Curriculum structure semester wise	Page 64 of 120		
Electronics and Communication Engineering	Year: 2019-23		

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Communication and Signal Processing Lab Course Code: 17EECP301			
L-T-P: 0-0-1	Credits: 1	Contact Hours:2 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 24Hrs	Examination Duration: -		

Proof of concept on Discrete ICs

- 1. DSBSC modulator and demodulator.
- 2. Frequency modulator and demodulator
- 3. Frequency Shift Keying (FSK) modulator and demodulator.
- 4. Time Division Multiplexing with minimum four channels

Mathematical Modeling and Simulation

- 1. Design Square Law Modulator and detect the signal using square law and envelop schemes.
- 2. Design Frequency Modulator and Demodulator and analyze the performance without and with noise.
- 3. Design, analyze and compare the BER for different digital modulation techniques.
- 4. Develop a model and simulate BPSK using Costa sloop.

Implementation on Real Time Hardware

- Design and Implement a complete real-time RF transceiver on Advanced Omni Software Radio Transceiver (AOSRT) for Narrow Band Frequency Modulation and Wide band Frequency Modulation and perform analysis.
- 2. Design and Implement a real-time RF transceiver for audio input using M-array PSK modulation scheme and analyze performance in terms of SNR and BER.

Open Ended Experiment

1. Explore the features of SDR to design an appropriate and robust frequency selective system to eliminate noise present in an audio signal.

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 65 of 120		
Electronics and Communication Engineering	Year: 2017-21		

Program: V Semester Bachel	or of Engineering (Elec	ctronics & Communicat	tion Engineering)
CMOS VLSI Circuits Laborato	ry Experiments	Course Code: 19	DEECP301
ISA Marks: 80	ESA Marks: 20		Total Marks: 100
Teaching Hours: 25Hrs	Examination Duration	on: 2 Hrs	Contact Hours: 2Hrs/week

- Introduction to Cadence EDA tool.
- 2. Static and Dynamic Characteristic of CMOS inverter.
- Layout of CMOS Inverter(DRC,LVS)
- 4. Static and Dynamic Characteristic of CMOS NAND2 and NOR2.
- 5. Layout of NAND2, NOR2, XOR2 gates (DRC,LVS).

Structured Enquiry

1.Design a Phase Detector using D-FF

Open Ended

1. Design complex combinational circuits and analyze the performance using Cadence tool.

Books/References:

- 1. John P. Uyemura, -Introduction to VLSI Circuits and System, Wiley, 2006.
- 2. Neil Weste and K. Eshragian Principles of CMOS VLSI Design: A System Perspective, 2nd edition, Pearson Education (Asia) Ptv. Ltd., 2000.

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 66 of 120		
Electronics and Communication Engineering	Year: 2017-21		

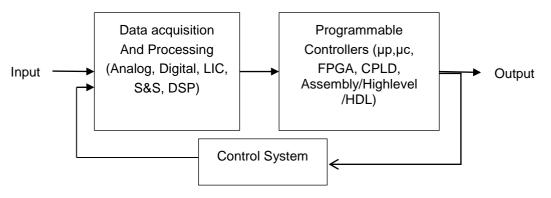
Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			
RTOS Laboratory Experiments		Course Code: 17EECP302	
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours: 24Hrs	Examination Duration: -	Contact Hours: 2 Hrs/week	

- 1. Analyze and Demonstrate debugging skills for programs given.
- 2. Program & demonstrate interfaces I2C-memory to LPC2148Microcontroller.
- 3. Program & demonstrate interfaces SPI-RTC to LPC2148Microcontroller.
- 4. Program & demonstrate concept of H/W Interrupts interface to LPC2148Microcontroller.
- 5. Program & demonstrate concept of Task Scheduling.
- 6. Program & demonstrate concept of Semaphore.
- 7. Program & demonstrate concept of Mailbox.
- 8. Program & demonstrate concept of S/W Interrupts.
- 9. Program & demonstrate concept of interrupts.
- 10. Program & demonstrate concept of Inter Task Communication.

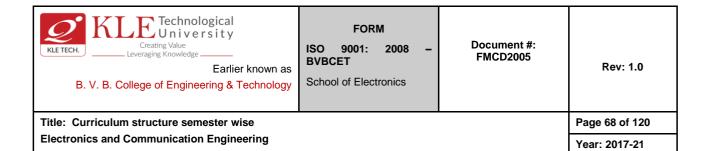
Reference Books

- 1. -ARMSystem- on-Chip Architecture By'SteveFurber,LPE,SecondEdition, Addison Wesley; 2000.
- $2.\ Embedded Systems-Architecture, Programming and Design \textbf{||} by RajKamal, 3^{rd}\ edition, TMH, 2017$
- 3. Dr.K.V.K.K.Prasad,-Embedded/Realtimesystems:concepts,Design&Programming||,publishedbydreamtechpress, 2003

Manual


- 1. LPC2148 datasheet byNXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 67 of 120		
Electronics and Communication Engineering	Year: 2017-21		


Laboratory Title: Mini Project	Lab. Code: 17EECW301	
Total Hours: 60	Duration of ESA Hours: 3 Hours	
ISA Marks: 50	ESA Marks: 50	

Guide lines for selection of a project:

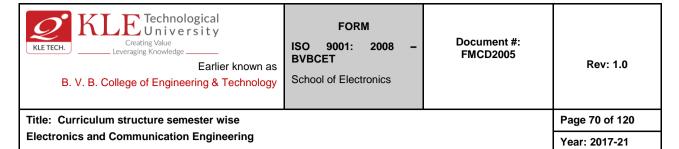
- 1. The project needs to encompass the concepts leant in a subject/s studied in the previous four semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the identified need.
- 2. Project should be able to exhibit sensing, controlling and actuation sections.
- 3. The mini project essentially will comprise of two components:
 - The hardware design
 - The graphical user interface (GUI) for application and data analysis with report generation.

- 4. Student can select a project which leads to a product or model or prototype related to following areas (not limited to these areas).
 - Pulse and digital circuits: simulate the working of one or more circuits
 - Signals and systems: simulate the behavior of a system by considering different signals
 - Analog Electronic: simulate working of different devices
 - Control systems: simulate the behavior of a control system
 - Linear Integrated Circuits: simulate working of one or more circuits
 - Micro-controllers: simulate the ALU/control unit of microcontroller
- 5. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50hrs).
- 6. Learning overhead should be 20-25% of total project development time.

-	ster Bachelor of Engineering (Electron		1	
Course Title: Automotive El		Course Code: 17EECC305	Teaching	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours	
SA Marks: 50	ESA Marks: 50	Total Marks: 100	_	
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs			
	Unit I			
Chapter 1: Introduction: Au	tomotive Systems, Design cycle and	Automotive industry overview :		
supply chain, global challe design Introduction to mo application areas of elect Automotive transmissions Hybrid Vehicles, ECU Design	nges. Role of technology in Automo odern automotive systems and need tronic systems in modern automo system ,Vehicle braking fundamen a Cycle: Types of model development	and their requirements, automotive of the Electronics and interdisciplinary of for electronics in automobiles and biles, Introduction to power train, tals, Steering Control, ,Overview of massis, Infotainment, Body Electronics	07	
	m in Automotive Applications & Aut	omotive safety systems		
control, Electronic systems maps, Need of maps, Proc calibration, Torque table, [in Engines , Development of control a edure to generate maps, Fuel maps	EMS: Engine control functions, Fuel algorithm for EMS, Look-up tables and /tables, Ignition maps/tables, Engine in Automobiles: Active and Passive	08	
	Unit II			
Chapter 3: Automotive Sen	sors and Actuators			
redundancy, Smart Nodes , Engine speed sensor, Vehic flow (MAF) rate sensor, Ex sensor, Crankshaft angular _I	Examples of sensors : Accelerometer cle speed sensor, Throttle position synhaust gas oxygen concentration se	dancy of sensors in ECUs, Avoiding (knock sensors), wheel speed sensors, ensor, Temperature sensor, Mass air nsor, Throttle plate angular position ate Pressure (MAP) sensor. Actuators: ecirculation Actuator.	08	
	nmunication protocols: Overview of	Automotive communication protocols	:	
CAN, LIN , Flex Ray, MOST			07	
	Unit III		-	
Chapter 5: Advanced Drive	r Assistance Systems (ADAS) and Fun	ctional safety standards:		
-		-		
Advanced Driver Assistance Systems (ADAS): Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, Safety concept, safety process for product life cycle, safety by design, validation.			05	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Page 69 of 120			Page 69 of 120
Electronics and Communication Engineering			Vear: 2017-21

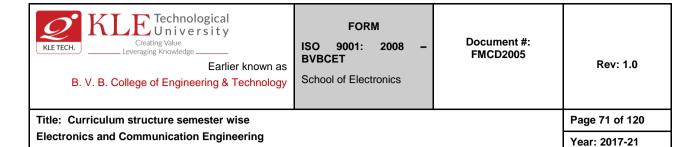
Chapter 6: Diagnostics:


Fundamentals of Diagnostics, Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in 05 Automobiles, OBDII, Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols KWP2000 and UDS

Text Books

- Ribbens, Understanding of Automotive electronics, 8th edition, Elsevier, 2017 1.
- Denton.T, Automobile Electrical and Electronic Systems, 5th edition, Routledge, 2017 2.
- Denton.T, Advanced automotive fault diagnosis, 4th edition Routledge, 2016 3.

References


- 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- James D Halderman, Automotive electricity and Electronics, 5th edition, Pearson, 2016 2.
- Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier 3. Science,2001
- 4. Nicholas Navet, Automotive Embedded System Handbook, 2009

Program: VI Semester Bac	chelor of Engineering (Electro	nics & Communication Engineering)	Teaching
Course Title: Computer Communication Networks		Course Code: 17EECC306	Hours
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/week	
ISA Marks:50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
Cont	tent		Hrs
Unit	:-1		
Chapter No. 1. Computer	Networks and the Internet		08 hrs
What is Internet? The Network Edge, the network Core, delay -loss—throughput in packet switched networks. Protocol layers (OSI layers) and their service models, networks under attack.			
Chapter No. 2. Application Layer		12 hrs	
Principles of network applications, the web and HTTP, DHCP, file transfer-FTP, electronic mail in the internet, DNS, peer-to-peer applications, socket programming-creating network applications Unit – 2			
	· · · · ·		
Chapter No. 3. Transport Layer			10 hrs
Introduction and transport-layer services-relationship between transport and network layers -			
overview of the transport layer in the internet, multiplexing and de multiplexing, connectionless transport: UDP, principles of			
	nection oriented transport TC	P, TCP congestion control.	
Chapter No. 4. Network layer		10 hrs	
Introduction, virtual circuit and datagram networks, what's inside router? The Internet protocol (IP):			
and multi cast routing.		rithms, routing in the internet, broadcast	
Unit	:-3		
Chapter No. 5. The link lay	yer: Links, Access networks, a	nd LANs	10 hrs
and protocols, switched lo		ection techniques, multiple access links dization: A network as a link layer, data deb page request.	
Text Book			
1. Kurose&Ros	ss,ComputerNetworkingATop-	DownApproach,6 th editionPEARSON,2013.	

References

- LarryL. Peterson&BruceS.Davie,ComputerNetworks:ASystemsApproach,5thedition, Elsevier, 2011
- Behrouz A. Forouzan, Data Communication and Networking, Paperback, 5th edition, TMG, 2017

Program: VI Semester B	achelor of Engineering (Electronic	& Communication Engineering)	Teaching
Course Title: Communication Systems II		Course Code: 21EECC307	Hours
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Content		
	Unit – I		Hours
robust quantization, DP formats	CM, DM, ADM, coding speech at	ation, PCM, quantization noise and SNR, low bit rates, applications, Binary data	06 Hrs
modulation techniques modulation techniques	s, Coherent quadrature modula , Comparison of Binary and Qua	Modulation formats, Coherent binary tion techniques. Non-coherent binary aternary Modulation techniques. M-ary I error probability, Synchronization and	10 Hrs
	Unit – II		
Discrete PAM signals, po ess base-band binary	ower spectra of discrete PAM sign	se-Band Shaping for Data Transmission, als. ISI, Nyquist's criterion for distortion eye pattern, base-band M-ary PAM	06 Hrs
nterpretation of signals n noise, probability of e	, response of bank of correlators to	orthogonalization procedure, geometric onoisy input, Detection of known signals filter receiver, detection of signals with maximum likelihood estimation.	08 Hrs
Chapter 05. Introducti Channels.	on to Information Theory: Basics	of Information, Discrete communication	02 Hrs
	Unit - III		
Average information co		Introduction, Measure of information, ndent sequences, Average information	08 Hrs
			•

Text Book:

- 1. Simon Haykin, Digital communications, John Wiley, 2006
- $2. \quad \text{K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 2006} \\$

Reference Book:

1. Simon Haykin, An introduction to Analog and Digital Communication, John Wiley, 2003

Earlier known as B. V. B. College of Engineering & Technology

FORM

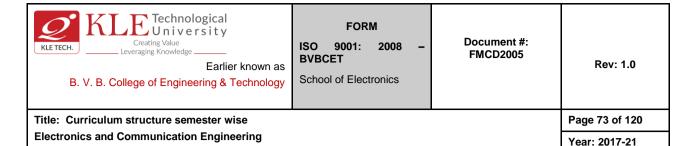
ISO 9001: 2008 BVBCET
School of Electronics Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering Page 72 of 120 Year: 2017-21

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Computer Communication Networks Laboratory Experiments(17EECP303)			
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours: 24Hrs	Examination Duration:-	Contact Hours: 2 Hrs/week	

List of Experiments


- 1. Introduction to Hardware components and Ethernet LAN setup.
- 2. Introduction to socket programming
- 3. Implementation of FTP
- 4. Implementation of error control techniques.
- 5. Implementation of flow controlARQs
- 6. Introduction to Network operating system.
- 7. Subnet design
- 8. VLAN setup
- 9. OSPF and RIP configuration and performance analysis
- 10. eBGP and iBGP configuration and performance analysis

Text Book.

1. Kurose&Ross, ComputerNetworkingATop-DownApproach,6theditionPEARSON, 2013.

References

- 1. Cisco networking academy, https://www.netacad.com/
- 2. Juniper networking academy, https://learningportal.juniper.net/

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Automotive Electronics Laboratory Experiments(17EECP304)				
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100				
Feaching Hours: 24Hrs Examination Duration:- Contact Hours: 2 Hrs/week				

List of Experiments

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling a vehicle motion on a flat surface during hard acceleration, deceleration and steady acceleration.
- 4. Simulation and modeling of a system and realization on the hardware platform.
- 5. Modeling Seat belt warning system, and Vehicle speed control based on the gear input.
- 6. EGAS modeling and simulation using Simulink and realization on the hardware platform.
- 7. Interior lighting control modeling with state flow.
- 8. Gear input transmission over CAN bus using ARM Cortex m3 and signal analysis using CANalyzer/BusMaster software.
- 9. Realize Steer by wire system using model based design.
- 10. Realize cruise application using model based design

Text Books

- 1. Ribbens, Understanding of Automotive electronics, 6th, Elsevier, 2003
- 2. Denton.T, Automobile Electrical and Electronic Systems, 5th edition, Routledge, 2017

Back to VI Sem

Earlier known as B. V. B. College of Engineering & Technology

ISO 9001: 2008 BVBCET

FORM

School of Electronics

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering Page 74 of 120 Year: 2017-21

Laboratory Title: Minor Project	Lab. Code: 17EECW302
Total Hours: 70	Duration of Exam: Hours: 2
Total Exam Marks: 50	Total ISA. Marks: 50

Application Areas are,

- Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Agriculture

Guide lines for selection of a project:

- 1. The project needs to encompass the concepts leant in a subject/s studied in the previous five semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the minor-projects.
- 2. Student can select a project which leads to a product or model or prototype.
- 3. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50hrs).
- 4. Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 1. 3-4 students in a team.
- 2. Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

1. Number of faculty members: 64

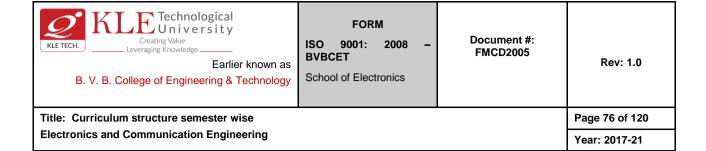
2. Number of students: 278

Role of a Guide

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

How student should carry out a project:

- 1. Define the problem
- 2. Specify the requirements
- 3. Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc)
- 4. Analyze the design
- 5. Select appropriate simulation tool and development board for the design.


Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Page 75 of 120			
Electronics and Communication Engineering			Year: 2017-21

- 6. Implement the design
- 7. Optimize the design and generate the results with optimized design.
- 8. Result representation and analysis
- 9. Prepare a document and presentation.

Report Writing

- 1. The format for report writing should be downloaded from ftp://10.3.0.3/minorprojects
- 2. The report needs to be shown to guide and committee for each review.

Back to VI Sem

Course Title: Analog Circuit Desi	gn	Course Code: 17EECE301	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3	
CIE Marks: 50	SEE Marks: 50	Self-Study :	
Teaching Hours: 40	Examination Duration: 3 hours	Total Marks: 100	
UNIT I			04
Basic MOS Device Physics: Gener MOS device models.	al considerations, MOS I/V characte	eristics, second order effects and	
Current Mirrors: Basic current M	irror, Widlar, Cascode and Wilson C	urrent Mirrors.	04
Single Stage Amplifiers: CS, CG, CD, Cascode and Folded Cascode. Frequency response curves UNIT II			08
Differential Amplifiers: Differential Amplifier, 5 pack differential Amplifier, CMRR, PSRR			
Op-Amp : Performance parameters, Two stage (7-pack) Op-amp, Slew rate, PSRR, Noise in Op-amps			05
Compensation Technique : Nyquist stability Criterion, Gain and Phase margins, Compensation of Two stage op-amp and Dominant pole compensation technique.		05	
WNIT III Reference Circuits: Current reference, startup circuits, Bandgap reference circuit, Current mode Bandgap reference.			06
Comparators: Basic Comparator architecture, non-idealities-offset error, bandwidth consideration, Dynamic comparator,			04

Text Books

- 1. B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001
- 2. Phillip. E. Allen, Douglas R. Holberg, "CMOS Analog circuit Design" Oxford University Press, 2002.
- 3. Baker, Li, Boyce, "CMOS: Circuit Design, Layout and Simulation", Prentice Hall of India, 2000

Reference Books

- 1. N. Weste and K. Eshranghian, Principles of CMOS VLSI Design, Addison Wesley. 1985.
- 2. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997

Earlier known as

FORM

ISO 9001: 2008 BVBCET

School of Electronics

FMCD2005

Document #:

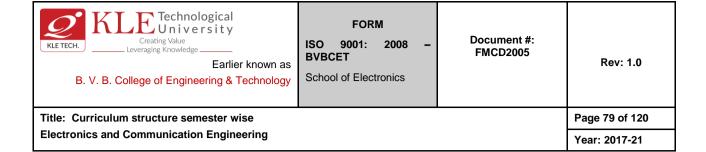
Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering

B. V. B. College of Engineering & Technology

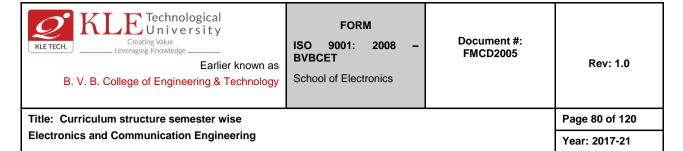
Page 77 of 120 Year: 2017-21

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Introduction to Deep Learning		Course Code: 19EECE322	Hours
L-T-P: 2-0-1	P: 2-0-1 Credits: 3 Contact Hours: 3 Hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
Unit I			
and deep learning, Basi	Applications of deep learning, Diffics of Neural Networks, Supervise	ferences between machine learning d Learning with Neural Networks, h, shallow neural networks, Deep	06 Hrs
Chapter 2: Hyper-Parameter Tuning, Regularization and Optimization: Basics of Hyper-parameters, Regularization, Need for regularization, dropout regularization, gradient checking, mini-batch gradient descent, exponentially weighted averages and its bias correction, Gradient descent with decay, Adam's optimization algorithm, The problem of local minima, weight initialization in neural networks, Normalizing activations in a network, Fitting Batch norm into a network, Softmax regression, Softmax classifier, Introduction to metric tensors and tensorflow, Basic programs in tensorflow.			10 Hrs
Unit II	al Nouval Naturarka		12 Hrs
convolution over volume ConvNet, Classic CNN N Data Augmentation, Bas object detection, Convo	er Vision and Image Processing, 2D e, One layer of a convolution netwo etworks, ResNet architecture, Ince sics of Keras, Residual networks,	Convolutions, Strided convolution, ork, ReLu and pooling, Example of a eption Networks, Transfer learning, Object Localization, Landmark and mg windows, YOLO algorithm, Carognition algorithm.	12 115
	n time, RNN model, Types of RNN, V Bidirectional RNN, Deep RNN, ba	anishing gradients with RNN, Gated sics of NLP and Concept of word	04 Hrs
	Unit III		
	_	ted Boltzman Machine) and auto with RBM, Deep belief networks.	10 Hrs


Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Page 78 of 120			
Electronics and Communication Engineering			Year: 2017-21

Text Books

- 1. Deep Learning, Ian Good fellow and Yoshua Bengio and Aaron Courville, MIT Press, http://www.deeplearningbook.org, 2016.
- 2. Neural Networks and Deep Learning by Michael Nielsen.

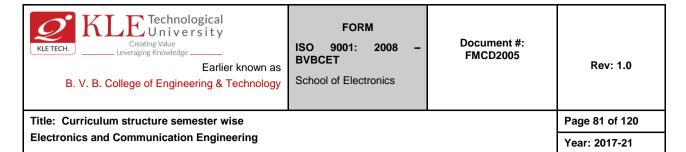

References

- 3. Deep Learning with Python, Francois Chollet, by Manning Publications, 2018.
- 4. Deep Learning by Microsoft Research
- 5. Deep Learning Tutorial by LISA lab, University of Montreal

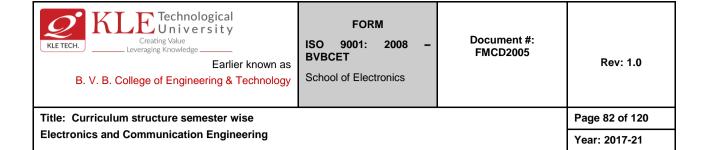
Course Code: 15EHSA401	Course Title: CIPE & EVS		
L-T-P : Audit	P: Audit Credits: Audit Contact Hr		
ISA Marks: 50	arks: 50 ESA Marks: 50 Total Marks:		
Teaching Hrs: 32		Exam Duration: 3 hours	

Content	Hrs	
Unit – 1		
Chapter No. 1 Features of Indian Constitution Features of Indian Constitution, Preamble to the constitution of India, Fundamental rights under Part III – details of Exercise of rights, Limitations & Important cases. Berubari Union and Exchange of Enclaves, Kesavan and Bharati vs. UOI, Maneka Gandhi vs. UOI, Air India Ltd. vs. NargeesMeerza, T.M.A. Pai Foundation v. St. of Karnataka, M.C. Mehta vs. UOI etc.,	4 hrs	
Chapter No. 2 Relevance of Directive principles of State Policy Relevance of Directive principles of State Policy under Part IV, Fundamental duties & their significance. SarlaMudgal v. UOI	3 hrs	
Chapter No. 3 Union Union – President, Vice President, Union Council of Ministers, Prime Minister, Parliament & the Supreme Court of India.	4 hrs	
Chapter No.4 State State – Governors, State Council of Ministers, Chief Minister, State Legislature and Judiciary.	2 hrs	
Chapter No. 5 Constitutional Provisions for Scheduled Castes & Tribes Constitutional Provisions for Scheduled Castes & Tribes, Women & Children & Backward classes, Emergency Provisions.	2 hrs	
Chapter No. 6 Electoral process Electoral process, Amendment procedure, 42nd, 44th and 86th Constitutional amendments.	2 hrs	
Unit – 2		
Chapter No. 7 Scope & Aims of Engineering Ethics	5 hrs	

Scope & Aims of Engineering Ethics: Meaning and purpose of Engineering Ethics, Responsibility of Engineers, Impediments to responsibility, Honesty, Integrity and reliability, risks, safety & liability in engineering. Bhopal Gas Tragedy, Titanic case.	
Chapter No. 8 Intellectual Property Rights Intellectual Property Rights (IPRs)- Patents, Copyright and Designs	3 hrs
Chapter No. 9 Ethical perspectives of professional bodies Ethical perspectives of professional bodies- IEEE, ASME, NSPE and ABET, ASCE etc.	
Unit – 3	
Chapter No. 10 Effects of human activities on environment Effects of human activities on environment - Agriculture, Housing, Industry, Mining, and Transportation activities, Environmental Impact Assessment, Sustainability and Sustainable Development.	2 hrs


Text Books (List of books as mentioned in the approved syllabus)

- 1. Dr. J. N. Pandey, "Constitutional Law of India", Central Law Agency, 2005
- 2. Dr. M.K. Bhandari, "Law relating to Intellectual Property Rights", Central Law Publications, Allahabad, 2010.
- 3. Charles E. Harris and others, "Engineering Ethics: Concepts and Cases", Thomson Wadsworth, 2003


References

- 1. Durga Das Basu, "Introduction to the Constitution of India", Prentice-hall EEE, 2001
- 2. Mike Martin and Ronald Schinzinger, "Ethics in Engineering", Tata McGraw-Hill Publications.

Back to VII SEM

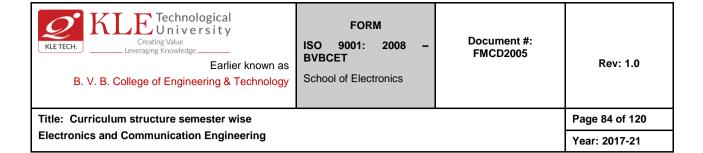
Course Title: Advanced Digital Logic Design	Course code: 17EECE302		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 04hrs/wee	k
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No. 1. Digital Integrated Circuits Challenges in digital design, Design metrics, Cost of Integrated circuits, ASIC, Evolution of SoC ASIC Flow Vs SoC Flow, SoC Design Challenges. Introduction to CMOS Technology, PMOS & NMOS Operation, CMOS Operation principles, Characteristic curves of CMOS, CMOS Inverter and characteristic curves, Delays in inverters, Buffer Design, Power dissipation in CMOS, CMOS Logic, Stick diagrams and Layout diagrams. Setup time, Hold Time, Timing Concepts.			8 hrs
Chapter No. 2. Digital Building Blocks Decoder, encoder, code converters, Priority encoder, multiplexer, DE multiplexer, Comparators, Parity check schemes, Multiplexer, De-multiplexer, Pass Transistor Logic, application of multiplexer as a multi-purpose logical element. Asynchronous and synchronous up-down counters, Shift registers. FSM Design, Mealy and Moore Modelling, Adder & Multiplier concepts, Memory Concept			6 hrs
Chapter No. 3. Logic Design Using Verilog Evolution & importance of HDL, Introduction to Verilog, Levels of Abstraction, Typical Design Flow, Lexical Conventions, Data Types Modules, Nets, Values, Data Types, Comments, arrays in Verilog, Expressions, Operators, Operands, Arrays, memories, Strings, Delays, parameterized designs Procedural blocks, Blocking and Non-Blocking Assignment, looping, flow Control, Task, Function, Synchronization, Event Simulation. Need for Verification, Basic test bench generation and Simulation			10 hrs
Chapter No. 4. Principles of RTL Design Verilog Coding Concepts, Verilog coding guide lines: Combinational, Sequential, FSM. General Guidelines, Synthesizable Verilog Constructs, Sensitivity List, Verilog Events, RTL Design Challenges, Clock Domain Crossing. Verilog modeling of combinational logic and sequential logic			8 hrs
Chapter No. 5. Design and simulation of Architectural building blocks Basic Building blocks design using Verilog HDL: Arithmetic Components – Adder, Subtractor, and Multiplier design, Data Integrity – Parity Generation circuits, Control logic – Arbitration, FSM Design – overlapping and non-overlapping Mealy and Moore state machine design			8 hrs
Reference Books: 1. Digital Design by Morris Mano M, 4th Edition. 2. Verilog HDL: A Guide to Digital Design and Synt 3. Principles of VLSI RTL Design: A Practical Guide Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWay	by Sapan Garg, 2011		

Course Title: Internet of Things	Course Code: 17EECE307	
Total Contact Hours: 3 Duration of ESA: 3 Hours		
ISA Marks: 50	ESA Marks: 50	
Content		Hrs
Unit - 1		
Chapter No. 1. Introduction to IoT		6 hrs
Defining IoT, Characteristics of IoT,		
What is the IoT and why is it important?		
Elements of an IoT ecosystem.		
Technology and business drivers.		
IoT applications, trends and implications.		
Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Com	nmunication models & APIs	
Chapter No. 2. IoT Architecture: State of the Art		4 hrs
History of IoT, M2M – Machine to Machine, Web of Things, IoT protocols		
Applications:		
Remote Monitoring & Sensing, Remote Controlling,Performance Analysis.		
Unit - 2		
Chapter No. 3. IoT Communication : The Layering concepts , IoT C protocol Architecture, The 6LoWPAN, Security aspects in IoT	ommunication Pattern, IoT	4 hrs
Chapter No. 4. IoT Application Development:		6 hrs
Application Protocols		
MQTT, REST/HTTP, CoAP, MySQL		
Unit - 3		
Chapter No. 5. Case Study & advanced IoT Applications:		6 hrs
IoT applications in home, infrastructures, buildings, security, Industries, I	lome	
appliances, other IoT electronic equipment's. Use of Big Data and Visus concepts.	alization in IoT, Industry 4.0	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 83 of 120
Electronics and Communication Engineering			Year: 2017-21

Hands-on Lab

Arduino, Android and AWS based Experiments

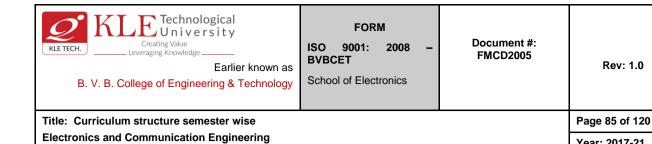

- 1. AWS Setup and instance creation.
- 2. Controlling LEDs blinking pattern through UART/WiFi
- 3. Simple photocell to measure the ambient light level
- 4. Controlling LEDs blinking pattern through PHP web server.
- 5. Temperature measurement through ADC and WiFi
- 6. Controlling and interacting with basic actuators (relay).
- 7. Android Application development.
- 8. Controlling of Arduino embedded system using Android App.
- 9. Motor Speed control using Embedded board and NodeMCU

Lua Programming Based Experiments

- 1. Introduction to Lua programming
- 2. Controlling inbuilt LED of ESP8266
- 3. Controlling Motion Sensor using NodeMCU module.
- 4. Using ESP8266 as Webserver
 - a. Understanding HTML Tags.
 - b. Understanding Request.
 - c. Reading Parameter Values.
 - d. Controlling LED.
- 5. ThingSpeak Cloud Data Visualization
 - a. Working with Temperature & Humidity Sensor
 - b. Working with ThingSpeak Cloud
 - c. Posting & Analyzing Sensor Data on ThingSpeak Cloud
 - d. ThingSpeak Cloud Mobile App

Working with MQTT/HTTP

- 1. Introduction to Cloud MQTT
- 2. MQTT Wireless Communication between two ESP boards
- 3. Controlling LED using voice commands HTTP to MQTT Bridge


Course Title: Information Theory and Coding	Course Code: 21EECE308	
Total Contact Hours: 40	Duration of ESA Hours: 3	hours
ESA Marks: 50	ISA Marks: 50	
Content		Hrs
Unit - 1		
Chapter 01. Review of information theory: Basics of Information, Measu	re of information, Entropy.	02 Hrs
Chapter 02. Discrete Channels: Discrete memory less Channels, Mutual information, Channel Capacity, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem.		08 Hrs
Chapter 03. Source Coding: Encoding of the source output, Shannon's encoding algorithm. Source coding theorem, Binary, ternary and quaternary Huffman coding, Construction of instantaneous codes.		08 Hrs
Unit - 2		
Chapter 04. Introduction to Error Control Coding: Introduction, Types of codes Linear Block Codes: Matrix description, Error detection and corr table look up for decoding, Generation of Hamming Codes.		06 Hrs
Chapter 05. Binary Cycle Codes: Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Systematic codes, non systematic codes, Error detection and error correction (Syndrome calculation) circuits.		05 Hrs
Chapter 06. Convolutional codes: Convolution Codes, Time domain approach. Transform domain approach. Systematic Convolution codes, Maximum Likelihood Decoding of Convolutional codes.		05 Hrs
Unit - 3		
Chapter 07. Coding for burst error correction and other types of code correcting codes, cyclic codes and convolutional codes for bursts error codes, Cyclic redundancy codes, Golay codes, shortened cyclic codes, Burst and Random Error correcting codes.	r correction, Reed soloman	08 Hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996
- 2. Simon Haykin, Digital communication, John Wiley, 2003

References

- 1. Ranjan Bose, ITC and Cryptography, TMH(reprint 2007), 2002
- 2. Glover and Grant, Digital Communications, 2, Pearson, 2008
- 3. D Ganesh Rao, K N Haribhat, Digital Communications, Sanguine, 2009

Year: 2017-21

Cours	se Title: Embedded Intelligent Sys	stems	Course Code: 17EECE3	10
L-T-P	: 0-0-3	Credits: 3	Contact Hrs: 6hrs/wee	ek
ISA N	1arks: 80	ESA Marks: 20	Total Marks: 100	
Teach	Teaching Hrs: 60	Exam Duration: 3 hrs		
		Unit - I		
1		ng, System V IPC, . Linux Kernel Inter iver Programming, Interrupts & Time ource build and execute		10 hrs
2	Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL). Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution		12 hrs	
		Unit - II		
3	,Model parsing, feature sup	ite machine learning framewo port and flexibility ,Supported laye hese frameworks, Android NN archit	rs , advantages and	16 hrs
4	Model Development and Opt Significance of on device Al,	imization Quantization , pruning, weight shari	_	8 hrs
	l	Unit - III		
5	Android Anatomy Android Architecture ,Linux Ke Application framework , Application	ernel , Binder , HAL Native Libraries , A cations, IPC	ndroid Runtime, Dalvik	8 hrs

Text Books

- Linux System Programming , by Robert Love , Copyright © 2007 O'Reilly Media
- Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster, Publisher: Morgan Kaufmann

Reference Books:

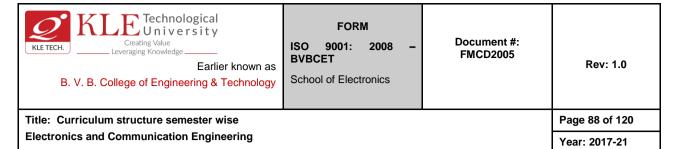
- 1. Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's
- 2. Beginning Android, by Wei-Meng Lee, Publisher: Wrox, O'Reilly Media

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 86 of 120
Electronics and Communication Engineering			Year: 2017-21

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
1	Project Examination	1,2,3,4,5	Project implementation and demonstration 20 marks

FORM


ISO 9001: 2008 BVBCET

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise **Electronics and Communication Engineering** Page 87 of 120 Year: 2017-21

Course Code: 20EECE340	Course Title: Multicore Ar	chitecture and Pro	gramming
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4Hr	/week
ISA Marks:50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 52	Exam Duration: 3		3
Conte	nt		Hrs
Unit –	1		
Chapter No. 1: Introduction to Multicore Drivers for Multicore Architectures: Low power, Pebandwidth – Limits of single core computing – Moo (ILP) – Power and heat dissipation issue – Increase traditional System-On-Chip (SoC) to MPSoCs (MMulticore controllers in Automotive domain	re's law - Limits to Instruction d amount of data to process	Level Parallelism – Evolution from	4hrs
Chapter No. 2: Multicore Architecture Dependent Multicore software and hardware architecture overview: Heterogeneous and Homogenous Multicorecture hardware processing elements: Point-to-point connecture Network-On-Chip (NoC) - Memory access in Multicorecture (SMP), Asymmetric Multi processing aka NUMA (Add specific to applications - Example Multicore hardware ST devices	re hardware – Communication ctions, Shared buses, On-chip e architectures: Symmetric M pros and cons)– Multicore ar	n between cross bar, ulti-Processing chitecture	12hrs
Unit –	2		
Chapter No. 3: Scheduling concepts and OS aspects What is Scheduling? — Static and Dynamic Scheduling (RMS), Fixed priority preemptive schedulingtrist, first come First serve — Process and threads — Volume of Multicore Scheduling: Global, Semi-partitioned and time systems - Scheduling in Single core vs Scheduling	ling, Round robin scheduling What is pre-emption? Why is d Partitioned –OS for General	, Earliest deadline it needed?- Types	10 hrs
Chapter No. 4: Concurrency and Parallelism			10hrs
Amdahl's law — Need for Parallelism — Concurrence Parallelism, loop Parallelism — Dependencies — Pro Loop dependencies—Shared resources — Caching a Synchronization primitives — Semaphore, Mutex, s Synchronization related issues and how to avoid the operations —	ducer consumer`— Need for spects - Problems with no spinlocks, Test and Set, Con	Synchronization, synchronization - npare and swap—	

Chapter 5: Advanced Multicore topics – Introduction/Overview

Multicore timing analysis - Timing simulation: Why it is needed? – WCET (Worst Case Execution Time) analysis – Schedulability analysis – Additional challenges in Multicore - Tools used in automotive: Timing architect, ChronSIM, Sym TA/S- Deterministic behavior – Logical Execution Time (LET)

References:

Highly Recommended: Real world Multicore embedded systems – Bryon Moyer

Highly Recommended for Embedded system and Real Time basics -Programming *Embedded* Systems with C and GNU Development Tools – Michael Barr

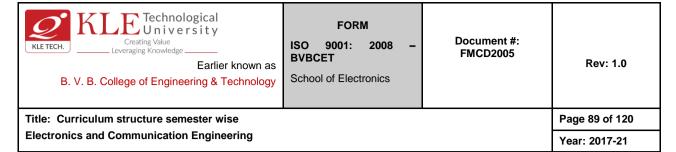
References in the internet for Multicore timing analysis:

Why is timing analysis important: http://embedded.cs.uni-saarland.de/publications/EnablingCompositionalityRTNS2016.pdf

Multicore timing simulation solutions:

https://www.vector.com/int/en/events/global-de-en/webinars/2020/timing-analysis-for-multicore-ecus/

https://www.rapitasystems.com/multicore-timing


https://www.inchron.com/tool-suite/chronsim/

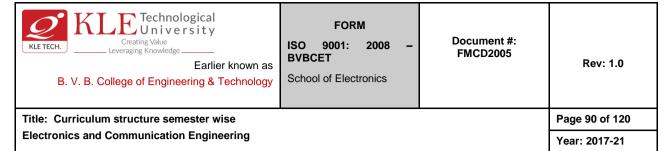
https://www.absint.com/ait/symtas.htm

 $\frac{https://www.danlawinc.com/wp-content/uploads/MC-BR-006-Multicore-Timing-Analysis-Solution-For-Aerospace-v3.pdf}{}$

Logical Execution Time (LET)

https://ieeexplore.ieee.org/document/5577967

Course Code: 18EECE421	Course Title: OOPS using C-	++	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42	
ISA: Marks: 80	ESA Marks: 20	6A Marks: 20 Total Marks: 100	
Teaching Hrs: 42		Exam Duration:	
Conten	t		Hrs
Unit – :	1		
Chapter 1: Fundamental concepts of object oriented programming, Programming Basics (keywords, objects), Arrays and Strings, Functions/ methods (para	identifiers, variables, op	-	04 hrs
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace			08hrs
Unit – :	2		I
Chapter 3: Inheritance: Introduction and benefits, Ab Access Specifier, Base and Derived class Constructors,	. 55 5		8 hrs
Chapter 4: Polymorphism: Virtual functions, Friend fu	inctions, static functions, this	pointer	6 hrs
Unit – :	3		i
Chapter 5: Exception Handling: Introduction to Exce catch block, Throw statement, Pre-defined exceptions			8 hrs
Chapter 6: I/O Streams: C++ Class Hierarchy, File Stre Error handling during file operations, Overloading		/ File Handling	6 hrs


Books/References:

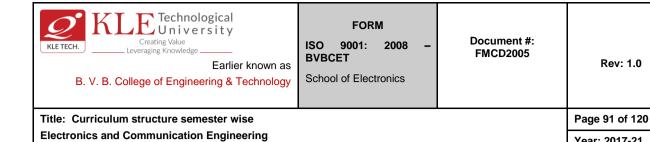
Text Book

1. Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.

References

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Program: VII Semester Bachelor of Eng	gineering (Electronics & Communica	tion Engineering)	
Course Code: 22EECC401	Course Title: Wireles	Course Title: Wireless & Mobile Communication	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	


Content	Hrs
Unit – 1	
Chapter 01: Radio Propagation: Free space propagation model, Relating power to electric field., Relation, ground reflection, scattering, Practical link budget design using path loss model, Outdoor propagation models, Signal penetration into buildings, Ray tracking and site specific modeling, Small scale Multipath measurements, Parameters of mobile Multipath channels, Types of small scale fading.	16
Unit – 2	
Chapter 02: Diversity techniques: Concept of Diversity branch and signal paths, Combining and switching methods, C/N, C/I performance improvements, RAKE receiver.	4
Chapter 03: Cellular concept: Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trucking and grade of service, Improving coverage, Capacity in cellular systems, FDMA, TDMA, Pseudo noise sequences, notion of spread spectrum, processing gain and Jamming margin, direct sequence spread spectrum, frequency hop spread spectrum, Spread spectrum multiple access, SDMA packet radio. Capacity of cellular systems.	12
Unit – 3	
Chapter 4: 5G: Implementation, components of the 5G, 5G architecture, 5G design, 5G network, 5G applications, Advantages and disadvantages	4
Chapter 5: Satellite orbits GEO, MEO, LEO and applications. Fiber to the home (FTTH): Working, FTTH architecture and components, benefits, advantages and disadvantages	4

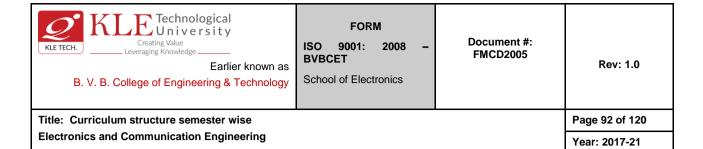
Text Book (List of books as mentioned in the approved syllabus)

1. T.S. Rapport, Wireless Communication, 2, Pearson Education, 2002

References

- 1. Kamil O Feher, Wireless digital communications: Modulation and spread spectrum Techniques, Prentice Hall of India, 2004
- 2. Vijay K Garg, IS_95 CDMA and cdma 2000, Pearson publication pvt. Ltd, 2004
- 3. Xiaodong Wang and Vincent Poor, wireless Communicating system: Advanced Techniques for signal Reception, Pearson publication pvt. Ltd, 2004

Year: 2017-21


Program: VII Semester B	achelor of Engineering (Electronics	& Communication Engineering)	Teaching
Course Title: Multimedia	Communication	Course Code: 18EECE410	Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Unit I		02Hrs
Chapter 1 : Introduction multimedia software too		Hyper media, WWW, overview of	02Hrs
Chapter 2 : Graphics an formats.	d Image representation: Graphics	/ Image data types, Popular file	
Chapter 3: Fundamental	concepts in video: Types of video si	gnals, analog video, digital video	06Hrs
.Chapter 4: Basics of digiting audio.	ital audio: Digitization of sound, MII	OI, Quantization and transmission of	05Hrs
	Unit II		
	npression algorithms: Introduction, coding, arithmetic coding, lossless in	run-length coding, variable length mage compression.	05Hrs
		distortion measures, quantization, s, embedded zero tree of wavelet	06Hrs
	ression standards: The JPEG stanel image compression standard.	dard, The JPEG2000 standard, The	06Hrs
	Unit III		
Chapter 7: Basics video motion compensation, F	•	riew, video compression based on	08Hrs
Chapter 8: Overview of I	MPEG-1, 2 4 and 7.		02Hrs

Text Books

1. Ze-Nian Li & Mark S Drew, "Fundamentals of multimedia", Pearson Education, 2004.

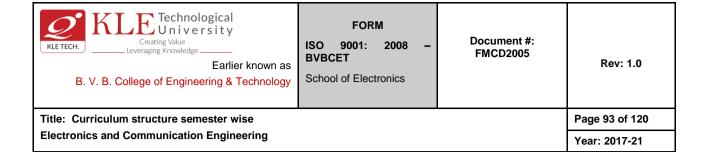
References

- 6. Ralf Steinmetz & Kalra Nahrstedt , "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 7. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks",. Second Indian reprint, 2004.

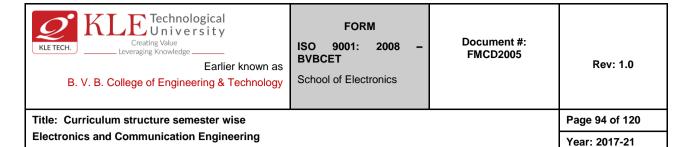
Progra	ım: VII Semester Bachelor of Engin	eering (Electronics & Commu	nication Engineering)	
Course	Code: 18EECE403	Course Title: MEMS		
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 40	
CIE Ma	arks: 50	SEE Marks: 50 Total Marks: 100		
Teachi	ing Hrs: 40		Exam Duration: 3 hrs	
No		Unit I		Hrs
1	Overview of MEMS and Mi Applications of Microsystems in Products, Consumer Products and	n Automotive, Aerospace, H	•	05
	Working principles of Microsys Sensors and Biosensors, Chemical			
2			uations: Micro-grippers, Micro-	10
		Unit II		
3	Scaling laws in miniaturization Dynamics, Electrostatic Forces, Transfer, Numerical problems.	<u> </u>		10
4	Materials for MEMS and Micro Silicon as Substrate Material, Si Quartz, Piezoelectric Crystals, Pol	licon Compounds, Silicon Pie		05

	Unit – III	
5	Microsystems Fabrication Processes: Photolithography, Ion Implantation, Diffusion, Oxidation, Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), Etching.	05
6	Micro-manufacturing: Bulk Micro-manufacturing, Surface Micromachining, The LIGA Process.	05

Text Book:


"MEMS and Microsystems – Design and Manufacture", Tai-Ran Hsu, TMH Edition 2002.

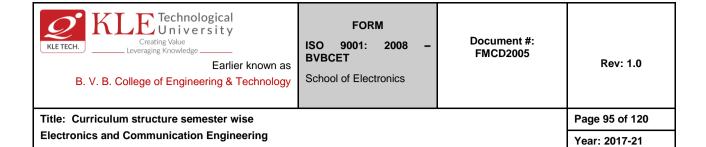
References:


"Micro system Design", Stephen D. Senturia, Kluwer Academic Publishers, 2001.

[&]quot;Foundations of MEMS", Chang Liu, Pearson Edition 2012.

[&]quot;RF MEMS:Theory, Design, and Technology", Gabriel M. Rebeiz, John Wiley & Sons Publication, 2003.

Course Title: Physical Design-Analog	Course code: 18E	Course code: 18EECE419	
L-T- P: 0-0-3	Credits: 03	Credits: 03 Contact Hrs: 06hrs/we	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No 1. Standard cell Layout creation: Lay Understanding verification errors, Error debugging editor, Quality of the layout, Half DRC rules, Mega m	g skills, Hands on experi		8 hrs
Chapter No 2. Analog layout: Importance of performance planning and placement, Attributes need to be to DRC, LVS, Density and RCX.		-	8 hrs
Chapter No 3. Matching and Guard rings, Matching: mismatch, Types of mismatch, Rules for matching, A Guard ring: What is guard ring, Usage of guard ring		n concepts, Causes for	6 hrs
Chapter No 4. Reliability issues: Introduction to f		-	8 hrs
Process enhancement techniques and Layout consid	derations to reduce reliab	iity issues	
	ffer: Applying the studie	d concepts and doing	10 hrs
Process enhancement techniques and Layout considerable Chapter No 5. Physical design of amplifier and but layout, Prioritising the constraints given, Quality	ffer: Applying the studie	d concepts and doing	10 hr:


Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Digital Image Processing		Course Code: 18EECE414	Hours
L-T-P: 2-0-1	Credits: 3 Contact Hours: 3 Hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Unit I		
	2D systems, mathematical prelimina	ries- FT, Z-transform, Optical and	
Modulation transfer functi	ions (OTF and MITF).		04Hrs
visibility function, monoc	ion: Light, luminance, brightness, co hrome vision models, Image fidelit	=	0.411
colour models.			04Hrs
Chapter 3: Image samplin	ng and quantization: 2D sampling th	eory, limitations in sampling and	
reconstruction, quantization, optimal quantizer, compandor and visual quantization.			07Hrs
	Unit II		
Chapter 4 : Image transform Harr, Slant, KLT transform	ms: 2D orthogonal and unitary trans s.	forms, DFT, DCT, DST, Hadamard,	10Hrs
Chapter 5: Image enhancement: Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement.			07Hrs
	Unit III		
Chapter 6: Image filtering and restoration: Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution.			10Hrs

Text Books

1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd

References

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd
- 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Code: 18EECE415 Course Title: Cryptography and Network Security				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 42		
CIE Marks: 50 SEE Marks: 50 Total Marks: 100				
Teaching Hrs: 42 Exam Duration: 3 hrs				

Content	Hrs
Unit - 1	
Chapter No. 1. Overview: Introduction, Services, Mechanisms and attacks of OSI architecture, Model	2 hrs
Chapter No. 2: Introduction to Finite Fields: Groups, Rings and fields. Modular Arithmetic, Euclid's Algorithm, Extended Euclid's algorithm, Finite fields of the form GF (p), Finite fields of the form GF(2n), Polynomial arithmetic, Euler's and format's theorem, Chinese remainder theorem	4 hrs
Chapter No. 3: Classical Encryption techniques: Symmetric cipher model, substitution technique, Transposition Techniques	5 hrs
Chapter No. 4: Block Ciphers and DES: Design and principles of Block Ciphers, DES, Strength of DES, Block Cipher Modes of Operation	5 hrs
Unit - 2	
Chapter No. 5: Advanced Encryption Standards: Evaluation Criterion of AES, AES Encryption and AES Decryption	4 hrs
Chapter No. 6: Public Key Cryptography and RSA: Design and principles, Concept of confidentiality and Authentication, RSA algorithm, Other Public Key Crypto Systems, Key Management, Daffier Hellman Key Exchange, Elliptic curve Cryptography	6 hrs
Chapter No. 7: Message Authentication and Hash Functions: Message Authentication codes, Hash functions, Security of Hash and MAC functions	3 hrs
Chapter No. 8: Digital Signature, Authentication and Hash Functions: Authentication Protocols, Digital signature Standard, DSS Algorithm	3 hrs

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 96 of 120
Electronics and Communication Engineering			Year: 2017-21

Unit - 3	
Chapter No. 9. Electronic Mail Security:	3 hrs
Pretty good privacy, Data Compression, PGP random number generator	
Chapter No. 10. IP Security & Web Security	7 hrs
IP security Architecture, Security Associations, Key management , Web security Considerations, Secure Socket layer, Transport layer security, secure electronic transactions	

Text Book (List of books as mentioned in the approved syllabus)

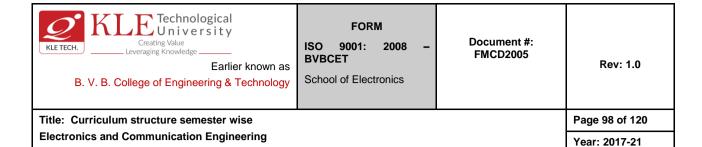
- 1. William Stallings, Cryptography and Network Security-Principles and practices, 3rd, PHI, 2003
- 2. Atul Kahate, Cryptography and Network Security, TMH, 2003
- 3. Behrouz A. Forouzan, Cryptography and Network Security, TMH, 2007

References

- 1. Koeblitz, Introduction to Number theory and Cryptography, Springler, 0000
- 2. Bruce Schneider, Applied Cryptography, 2nd, John Wiley, 2001
- 3. Eric Maiwad, Fundamentals of Network security, 2nd , TMH, 2002 $\,$

Earlier known as B. V. B. College of Engineering & Technology

FORM

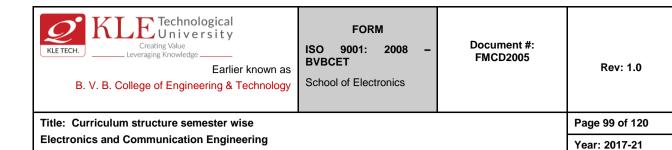

ISO 9001: 2008 BVBCET
School of Electronics Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering Page 97 of 120 Year: 2017-21

Program: VII Semester E	Bachelor of Engineering (Electronic	cs & Communication Engineering)	Teaching
Course Title: Embedded Linux Course Code: 18EECE405		Hours	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Unit I		
Distributions - Devices Gnome. Chapter 2: Overview of Overview: Developme	ux -Benefits of Linux -Acquiring and Drives in Linux-Components Embedded Linux: nt-Kernel architectures and coll chains in Embedded Linux-GNU	and Using Linux -Examining Linux E: Kernel, Distribution, Sawfish, and device driver model- Embedded Tool Chain (GCC,GDB, MAKE, GPROF	04 Hrs 06 Hrs 06 Hrs
	ed and static Libraries overview-W dded Linux system	ot file system-Binaries required for riting applications in user space-GUI	
Chantar 4: Eila system in	Unit II		06 Hrs
Chapter 4: File system in File system Hierarchy-Fil	e system Navigation -Managing th	e File system –Extended file	00 113
	= = =	ystems- Performing File system Mounting and Un-mounting –Buffer	04 Hrs
	ion & Porting of Embedded Linux	-Examining Shells -Using Variables - stem Start-up Files -Creating a Shell	
Chanter 6: Process man	agement and Inter process comm	unication:	08 Hrs
Managing Process and E Introducing Delayed an	Background Processes -Using the F	Process Table to Manage Processes - and Managing Services -Starting and	

semaphores-semtools-shared memory semtools- signals-sockets


Unit III	
Chapter 7: Linux device drivers	08 Hrs
Devices in Linux- User Space Driver APIs- Compiling, Loading and Exporting- Character Devices- Tracing and Debugging- Blocking and Wait Queues- Accessing Hardware- Handling Interrupts- Accessing PCI hardware- USB Drivers- Managing Time- Block Device Drivers- Network Drivers- Adding a Driver to the Kernel Tree.	

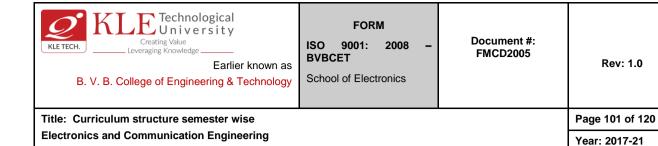
Text Books

- 1.Embedded Linux –Hardware, Software and Interfacing Craig Hollabaugh, Addison-Wesley Professional, 2002
- 2.Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed (MISL-DT) Paperback 12 Nov 2003.

References

- 3. Building Embedded Linux Systems, Karim Yaghmour, First edition, April 2003.
- 4. Embedded Linux- John Lombardo, Newriders.com

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Code: 18EECE409 Course Title: Design and Analysis of Algorithms			
L-T-P: 0-0-3	Credits: 3 Contact Hrs: 72 Hrs		
ISA Marks: 100	ESA Marks: 00	Total Marks: 100	
	Content		
	Unit – 1		Hrs
Chapter No. 1: Framework for Analysis of Al Analysis Framework, Asymptotic Notations Non-Recursive Algorithms, Mathematical Ana	and Basic Efficiency Classes, Ma	athematical Analysis of	4
Chapter No 2: Trees and Graphs Overview of Trees. AVL Trees. Red — Black applications. Topological Sorting. Shortest pat	• • •	•	8
Chapter No 3: Hashing Direct Address Table, Hash Table, Hash Function, Collision Resolution Techniques.			3
	Unit – 2		
Chapter No 4 : Substring Matching and Sorting Brute-force method, Boyer-Moore — Hoors sort, selection sort. Divide and Conquer: insertion sort, merge sort.	pool Algorithm, Knuth-Morris-F	ratt Algorithm, Bubble	8
Chapter No 5: Greedy Technique Introduction, Interval Scheduling, Proof Strate	egies, Huffmann Coding, 0/1 knap	osack	2
Chapter No 6: Dynamic Programming Introduction and Definition. Memorization, Fibonacci Series, Edit Distance, Longest Increasing Subsequence, Longest Common Subsequence, Matrix multiplication, Coin Change problem, Subset Sum problem.			5
Unit - 3			
Chapter No 7: Backtracking Introduction. N-Queens Problem, Generating string permutation, Hamiltonian Cycle.			5
Chapter No 8 : Branch and Bound Introduction. Travelling Salesman problem, Job Assignment Problem.			5

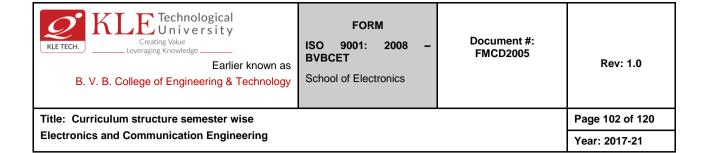

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 100 of 120
Electronics and Communication Engineering			Year: 2017-21

Text Books:

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Introduction to Design and Analysis of Algorithms Anany Levitin 3rd Edition

Reference Books:

- 1. Introduction to Algorithms Thomas H. Cormen 3rd edition
- 2. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 3. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk



Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Title: Advanced Digital Logic Verification	Course code: 18EECE418			
L-T- P: 0-0-3	Credits: 03 Contact Hrs: 06hrs/week			
CIE Marks: 100	SEE Marks: 00 Total Marks: 100			
Teaching Hrs: 16hrs Lab Hrs: 24 hrs				
Chapter No. 1. Verification Concepts: Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.				
Chapter No. 2. Language Constructs System Verilog constructs: Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, modports.			6 hrs	
Chapter No. 3. Classes & Randomization SV Classes: Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.			10 hrs	
Chapter No. 4. Assertions & Coverage Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification: Motivation, Types of coverage, Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.			8 hrs	
Chapter No. 5. Building Testbench: Layered testbench architecture. Introduction to Universal Verification Methodology, Overview of UVM Base Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM environment structure, Connecting DUT- Virtual Interface			8 hrs	

References:

- 1. System Verilog LRM
- 2. Chris Spear, Gregory J Tumbush SystemVerilog for verification a guide to learning the testbench language features Springer, 2012
- 3. Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis Inc. Santa Clara, CA Spring 2008

Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: CMOS ASIC Design (PD-Digital)	Course code: 18EECE420		
L-T- P: 0-0-3	Credits: 03	k	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 40hrs Lab Hrs: 24 hrs			
Chapter No. 1. Introduction: Design of combinational and scharacterization of standard cells. Verilog for representing gate le		es in CMOS. Layout and	8 hrs
Chapter No. 2. Timing Analysis: Sequential circuit timing and static timing analysis. Cell and net delays and cross-talk. Rationale and implementation of scan chains for testing standard-cell based logic circuits. Timing Verification: Setup Timing Check, Hold Timing Check, Timing across Clock Domains			10hrs
Chapter No. 3: Physical design Physical design of standard-cell based CMOS ASICs: scan insert routing. Netlist transformations at each step of the physical design Net parasitic and parasitic extraction. Use of PLLs for clock generations.	gn process.	clock tree synthesis and	12 hrs
Chapter No. 4. Standard Data formats: Standard data formats for representing technology and design: LEF, Liberty, SDC, DEF and SPEF. Clock gating and power gating for reduction of device power consumption. Design for reliability: electro- migration, wire self heat and ESD checks and fixes.			6 hrs
Chapter No. 5. Packaging An overview of package design and implementation and system I	evel timing.		4 hrs

Reference Books:

- 1. The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985.
- 2. H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design Compiler Physical Compiler and PrimeTime, 2nd edition, 2001.
- 3. Static Timing Analysis for Nanometer Designs A Practical Approach, J. Bhasker Rakesh Chadha, 2 Springer Science+Business Media, LLC 2009

Tools: Cadence Innovous, Encounter

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 - BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 103 of 120
Electronics and Communication Engineering			Year: 2017-21

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Code: 18EECE411	Course Title: Microv	Course Title: Microwave & Antenna		
L-T-P: 3-0-0	Credits: 03	Contact Hrs: 40		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Exam Duration: 03 hrs		

Content	Hrs
Unit - 1	
Chapter No. 1. Microwave Vacuum Tube Devices: Introduction , Reflex Klystron , Problems	04
Chapter No. 2. Microwave components: Directional couplers, Circulators, Magic T, Isolator, s-Matrix and Attenuators	08
Unit - 2	
Chapter No. 3. Antenna Parameters: Introduction, Basic antenna parameters ,Pattern, Beam width, Radiation intensity, Beam efficiency, Directivity, Gain, Aperture, Effective height, Polarization, Antenna field zone, The radio communication link. Radiation resistance of Short electric dipole and half wave length antenna.	10
Chapter No. 4. Sources and Arrays: Introduction, Point sources, Power patterns, Power theorem, Examples on power theorem, Directivity and beam width of point sources, Arrays of two isotropic point sources, Pattern multiplication, Linear array of n isotropic point sources of equal amplitude and spacing, Broad side array, End fire array.	08
Unit - 3	
Chapter No. 5. Antenna practice: Yagi-Uda Antenna, Loop antenna, Horn antenna, Parabolic reflector, Helical antenna, Log periodic antenna, Mobile Station Antennas, Antennas for GPR: Pulse Bandwidth, Embedded Antennas, UWB Antennas for Digital Applications, The Plasma Antenna	10

Text Book (List of books as mentioned in the approved syllabus)

- 1. J.D.Kraus & Khan,MGH publication , "Antennas" , 2006, third edition.
- 2. Samuel Y Liao, "Microwave Devices and Circuits", PHI Pearson Education, Third Edition.

References

- 1. F.E.Terman, "Electromagnetic and radio engineering" by, TMcH publication, second Edition.
- 2. E.C.Jordan', "Electromagnetic waves & radiating systems", PHI publication, second edition
- 3. C.A.Balnis, "Antenna theory and analysis and design" ,1999,third edition.
- 4. K.D.Prasad ,"Antenna and wave propagation" by '1990, first edition.
- 5. Annapurna Das, Sisir K Das, "Microwave engineering", TMH Publications 2001.

Earlier known as

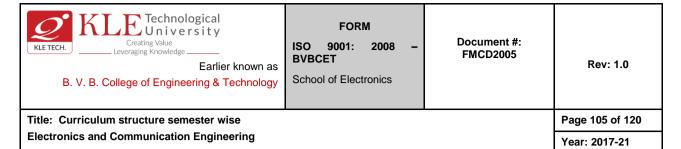
ISO 9001: 2008

FORM

BVBCET FM0
School of Electronics

Document #: FMCD2005

Rev: 1.0

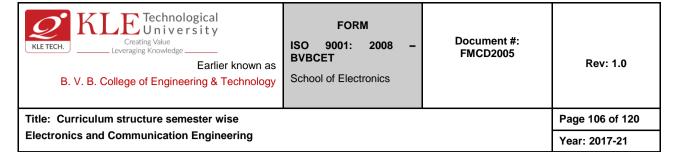

Title: Curriculum structure semester wise Electronics and Communication Engineering

B. V. B. College of Engineering & Technology

Page 104 of 120 Year: 2017-21

Course Code: 19EECE416	Course Title: Biosensor		
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 72	
ISA Marks: 100	ESA Marks: 00	Total Marks: 100	

Content	Hrs	
Unit - 1		
Chapter No. 1. Basic Introduction to sensors: Introduction to sensors: fundamental characteristics such as Sensitivity, linearity, repeatability, hysteresis, drift. Sensing Principles: optical sensors, electrochemical sensors, micromechanical sensors, surface Plasmon sensors, colorimetric Sensors, acoustic sensors	5 hrs	
Chapter No. 2. Active Electrical Transducers: Thermoelectric transducers, thermoelectric phenomenon, common thermocouple systems, piezoelectric transducers, piezoelectric phenomenon piezoelectric materials, piezoelectric force transducers, piezoelectric strain, piezoelectric torque transducers, piezoelectric pressure transducers, piezoelectric acceleration transducers. Magnetostrictive transducers Magnetostrictive force transducers, Magnetostrictive acceleration transducers, Magnetostrictive torsion transducers, Hall Effect transducers, and application of Hall transducer. Electromechanical Transducers-Tachometers, variable reluctance tachometers Electrodynamic vibration transducers, Electromagnetic pressure electromagnetic flowmeter. Photoelectric transducers-photoelectric phenomenon, photoelectric transducers, Photo volatile transducers, Photo emissive transducers. Electrochemical transducers- basics of electrode potentials, reference electrodes, indicator electrodes, measurement of PH, measurement of bioelectric signals.	10 hrs	
Unit - 2		
Chapter No. 3. Passive electrical transducer: Introduction, Resistive transducers- resistance thermometers, hot wire resistance transducers, Resistive displacement transducer, Resistive strain transducer, resistive pressure transducer, resistive optical radiation transducers. Inductive Transducers-Inductive thickness transducers, Inductive displacement transducers, Movable coretype Inductive transducers, eddy current type Inductive transducers. Capacitive transducers-Capacitive thickness transducers, capacitive displacement transducers, capacitive moisture transducers Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.	5 hrs	
Chapter No. 4. Micro fabrication Technology: Design of process flow for device fabrication for application in biology and medicine: Introduction to the Clean room and contaminants, Wafer cleaning processes (DI water, RCA, metallic impurities, etc.), Substrate materials: Silicon, polymer and PCB, Thermal oxidation: Wet and dry oxidation, thin film deposition techniques: PVD- DC and RF Magnetron Sputtering, thermal evaporation, e-beam evaporation, LPCVD, PLD. Types of masks: Hard and soft Lithography, Lithography – UV Photolithography, Soft lithography,	10 hrs	


additive manufacturing. Mask design and fabrication – Photo resists and mechanical mask such as stencils. Types of etching- Wet etching- anisotropic and Isotropic and dry etching RIE and DRIE. Device fabrication and inspection in the clean room.	
Unit - 3	l
Chapter No. 5. Biosensors Introduction: Biosensors and its applications in health care, agriculture, drug discovery and environmental monitoring. Devices for biology and medicine: Microfluidic channels, flow cytometry/ sorting, microchip using electrophoresis, force measurement with cantilevers, micro engineered devices for medical therapeutics, blood pressure sensors, devices for drug delivery, and devices for minimally invasive surgery.	5 hrs
Chapter No. 6. Biological components for detection Enzymes, antigen-antibody reaction, biochemical detection of analysts, organelles, whole cell, receptors, DNA probe, pesticide detection, sensors for pollutant gases. Surface chemistry: Immobilization of biorecognition element, Antigen-Antibody functionalization, and assay labels including radioisotopes, fluorophores, dyes.	5 hrs

Text Books (List of books as mentioned in the approved syllabus):

- 1. Fundamentals of Microfabrication and Nanotechnology by Marc J. Madou, 3rd edition. Taylor and Francis group.
- 2. Transducers and Instrumentation D.V.S. Murthy, 2nd Edn, PHI Ltd, 2010.
- 3. A.P.F. Turner, I. Karube & G.S. Wilson: Biosensors: Fundamentals & Applications, Oxford University Press, Oxford, 1987.

References:

- 1. Ernest O. Doeblin: Measurement Systems, Application and Design, McGraw-Hill, 1985.
- 2. Richard S.C. Cobbold : Transducers for Biomedical Measurements: Principles and Applications, John Wiley & Sons, 1974
- 3. John G. Webster (ed.): Medical Instrumentation Application and Design; Houghton Mifflin Co., Boston, 1992.
- 4. Stephen D. Senturia: "Micro system Design", Kluwer Academic Publishers, 2001

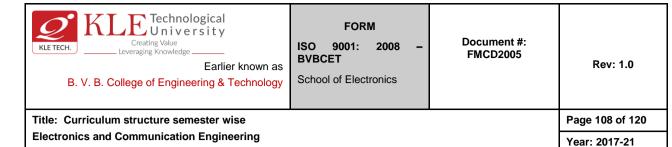
Course Code: 20EECE406	Course Title: AUTOSA	Course Title: AUTOSAR	
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	

Content	Hrs
Unit - 1	·
Chapter No. 1: AUTOSAR Fundamentals: Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.	8 hrs
Chapter No. 2: AUTOSAR layered Architecture: AUTOSAR Basic software, Details on the various layers , Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology , Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C) ,Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview , AUTOSAR XCP, Metamodel , From the model to the process , Software development process.	7 hrs
Unit - 2	ı
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR: CAN Communication, CAN FD, CANape, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	10 hrs
Chapter No. 4: Overview about BSW constituents: BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface, (AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	5 hrs
Unit - 3	
Chapter 5: MCAL and ECU abstraction Layer: Microcontroller Drivers, Memory drivers: on-chip and off chip drivers, IO drivers(ADC, PWM, DIO), Communication drivers: CAN driver, LIN drivers, Flexrfay	5 hrs
Chapter 6: Service Layer: Diagnostic Event Manager, Function inhibits Manager, Diagnostic communication manager, Network management, Protocol data unit router, Diagnostic log and trace unit, COMM manager.	5 hrs
Text Book (List of books as mentioned in the approved syllabus) 1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

Electronics and Communication Engineering

Program: VII Semester Bachelor of Engineerin			
Course Code: 21EECE421	Course Title: RF VLSI		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hours Total Marks: 100	
SA Marks: 50	ESA Marks: 50		
Teaching Hrs: 40		Exam Duration: 3	}
	Content		Hrs
	Unit - 1		
Chapter No. 1: Basic concepts in RF Design			8 hrs
Basic concepts in RF Design – harmonics, modulation, intermodulation, inter symbol in dynamic range.	•		
Chapter No. 2: Receiver architectures			7 hrs
Receiver architectures – heterodyne receiver IF receivers and subsampling receivers.	s, homodyne receivers, image-r	eject receivers, digital-	
	Unit - 2		
Chapter No. 3: Transmitter architectures			
			10 hrs
Transmitter architectures – direct-conversi amplifier (LNA) – general considerations, inpu	•	ansmitters; Low noise	10 hrs
Transmitter architectures – direct-conversi	•	ansmitters; Low noise	10 hrs 5 hrs
Transmitter architectures – direct-conversi amplifier (LNA) – general considerations, inpu	t matching, CMOS LNAs	ansmitters; Low noise	
Transmitter architectures – direct-conversi amplifier (LNA) – general considerations, inpu Chapter No. 4: Mixers	t matching, CMOS LNAs	ansmitters; Low noise	
Transmitter architectures – direct-conversi amplifier (LNA) – general considerations, inpu Chapter No. 4: Mixers	it matching, CMOS LNAs	ansmitters; Low noise	

Rev: 1.0

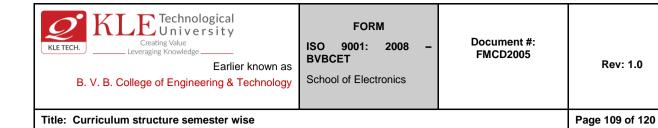

Page 107 of 120

Year: 2017-21

Text Books:

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1997

Thomas H. Lee, The design of CMOS radio-frequency integrated circuit, Cambridge University Press, 2006 Chris Bowick, RF Circuit Design, Newnes, 2007

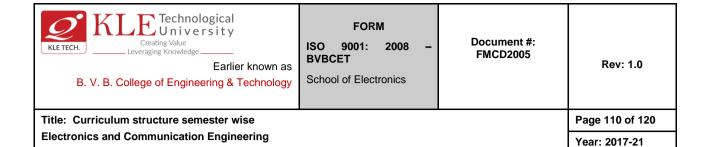

Course Code: 21EECE423	Course Title: CAD for VLSI		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	3
Content			Hrs
Unit - 1]
Chapter No. 1: Introduction Introduction to VLSI design methodologies and supp Parsing: Reading files, describing data formats, Graph plotter into an editor. Layout language: Parameterized	nics & Plotting Layout. Layou		8 hrs
Chapter No. 2: Silicon Compiler Introduction to Silicon compiler, Data path, Compiler,	Placement & routing, Floor p	lanning.	7 hrs
Unit - 2			1
Chapter No. 3: Layout Analysis and Simulations Layout Analysis: Design rules, Object based DRC, Edge Simulation: Types of simulation, Behavioral simulator, simulator. Simulation Algorithms: Compiled code Greedy methods, simulated annealing, genetic algorith	logic simulator, functional si and Event-driven. Optimiza	mulator & Circuit	10 hrs
Chapter No. 4: Testing ICs			5 hrs
Testing ICs: Fault simulation, Aids for test generation a Big Oh and big omega terms.	and testing. Computational c	omplexity issues:	
Unit - 3			1
Chapter 5: Recent Topics in CAD-VLSI Recent topics in CAD-VLSI: Array compilers, hardware and VHDL modeling.	software co-design, high-lev	el synthesis tools	10 hrs

Text Books:

- 1. Stephen Trimberger," Introduction to CAD for VLSI", Kluwer Academic publisher, 2002
- 2. Naveed Shervani, "Algorithms for VLSI physical design Automation", Kluwer Academic Publisher, Second edition.

Reference Books

- 1. Gaynor E. Taylor, G. Russell, "Algorithmic and Knowledge Based CAD for VLSI", Peter peregrinus ltd. London.
- 2. Gerez, "Algorithms VLSI Design Automation", John Wiley & Sons.

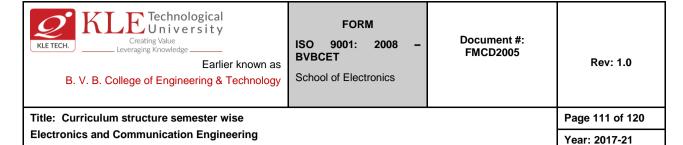


Electronics and Communication Engineering

Rev: 1.0

Year: 2017-21

Program: VII Semester Bachelor of Engineering (Election	onics & Communication Eng	gineering)	
Course Code: 21EECE424	Course Title: System on Chip Design		
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 3 Ho	ours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	3
Content			Hrs
Unit - 1			
Chapter No. 1: Introduction Introduction: Driving Forces for SoC - Components of nature of SoC - Design Trade-offs - SoC Applications	SoC - Design flow of SoC Ha	rdware/Software	5 hrs
Chapter No. 2: System Level Design System-level Design: Processor selection-Concepts architecture (ISA), elements in Instruction Handing-Superscalar, CISC, RISC—Processor evolution: Soft processors- on-chip memory.	Robust processors: Vector	processor, VLIW,	10 hrs
Unit - 2			
Chapter 3: On-chip bus and IP based design Interconnection: On-chip Buses: basic architecture, standards: AMBA, Core Connect, Wishbone, Avalon switching strategies - routing algorithms flow con communication architectures. IP based system design IP across design hierarchy, IP life cycle, Creating and integration - IP evaluation on FPGA prototypes.	 Network-on chip: Archite trol, Quality-of-Service- Re- Introduction to IP Based de 	cture topologies- configurability in esign, Types of IP,	10 hrs
Chapter 4: SoC Implementation			5 hrs
SOC implementation: Study of processor IP, Memor system (RTOS), Peripheral interface and components, design.			
Unit - 3			1
Chapter 5: SoC Testing SOC testing: Manufacturing test of SoC: Core layer, sy Standardization-SoC Test Automation (STAT).	rstem layer, application laye	r-P1500 Wrapper	10 hrs



Text Books:

- 1. Michael J.Flynn, Wayne Luk, "Computer system Design: Systemon-Chip", Wiley-India, 2012.
- 2. Sudeep Pasricha, Nikil Dutt, "On Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers, 2008.
- 3. W.H.Wolf, "Computers as Components: Principles of Embedded Computing System Design", Elsevier, 2008.

Reference Books

- 1. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", 2nd Edition, Springer, 2012.
- 2. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on-chip. Springer, 2006.
- 3. Wayne Wolf, "Modern VLSI Design: IP Based Design", Prentice-Hall India, Fourth edition, 2009.

Course Code: 21EECE422	Course Title: Speech	Processing	
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 3 Ho	ours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100)
Teaching Hrs: 40		Exam Duration:	3
Cont	tent		Hrs
Unit	t - 1		
Chapter 1: Introduction: Basic Concepts: Speroduction and Classification of Speech Sound production; Review of Digital Signal Processing Bank and LPC Methods.	ds; Acoustic Phonetics	 acoustics of speech 	5 hrs
Chapter 2: Speech Analysis: Features, Feature E Speech distortion measures – mathematical ar Distances, Weighted Kestrel Distances and Filte using a Warped Frequency Scale, LPC, PLP Normalization – Dynamic Time Warping, Multiple	nd perceptual – Log Spe ring, Likelihood Distortic and MFCC Coefficients,	ectral Distance, Kestrel ons, Spectral Distortion	10 hr
Unit	t - 2		
Chapter 3: Speech Modeling: Hidden Markov N Optimal State Sequence – Viterbi Search, Baum-V issues			10 hr
Chapter 4: Speech Recognition: Large Vocabular of a large vocabulary continuous speech recognit grams, context dependent sub-word units; Applic	tion system – acoustics an	d language models – n-	5 hrs
Unit		·	
O I III	t - 3		

Text Books:

- 1. Lawrence Rabinerand Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003
- 2. Daniel Jurafsky and James H Martin, "Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education.

Reference Books

- 1.Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing.
- 2.Thomas F Quatieri, "Discrete-Time Speech Signal Processing Principles and Practice", Pearson Education.
 3.Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.
- 4.Ben gold and Nelson Morgan, "Speech and audio signal processing", processing and perception of speech and music, Wiley- India Edition, 2006 Edition.
- 5. Frederick Jelinek, "Statistical Methods of Speech Recognition", MIT Press.

Electronics and Communication Engineering

Teaching Hrs: 40

Document #: FMCD2005

Rev: 1.0

Page 112 of 120

Year: 2017-21

Exam Duration: 3 hrs

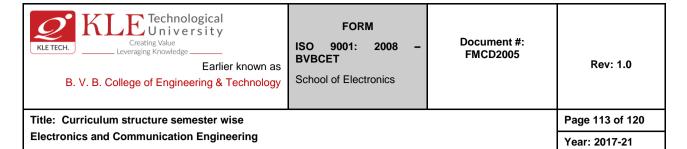
Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)

Course Code: 22EECE423

Course Title: Power Management Integrated Circuit

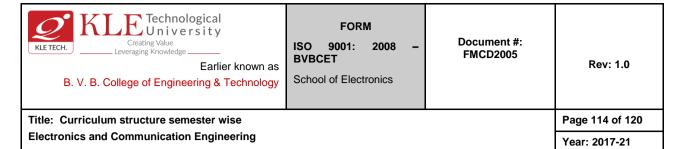
L-T-P: 3-0-0

Credits: 3


Contact Hrs: 40

ISA Marks: 50

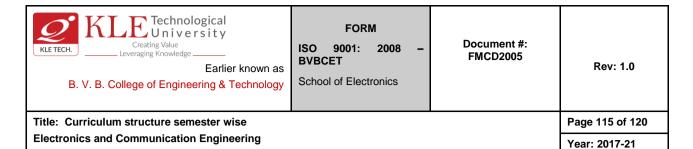
ESA Marks: 50


Total Marks: 100

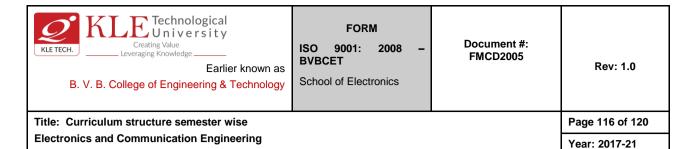
Content	Hrs
Unit – 1	
Chapter 1. Basic Concepts of Power Management	6 hrs
Introduction to Power Management; Performance Parameters. Sub-1-volt Bandgap Reference;	
Chapter 2. Linear Regulators	12 hrs
Introduction to Linear Regulator, Applications of Linear Regulator; : Miller Compensation, R.H.P. zero due to Miller Compensation, Intuitive Methods of Determining Poles and Zeros after Miller Compensation, Static Offset Correction, Dynamic Offset Cancellation; Digital LDO, Avoidance of Limit Cycle Oscillations in a Digital LDO, : Hard Switching Loss, Magnetic Loss, Relative Significance of Losses as a Function of the Load Current	
Unit – 2	
Chapter 4. Buck Converters	12hrs
Compensating a Voltage-Mode-Controlled Buck Converter; Designing Type-I (Integral), Type-II (PI)	
and Type-III (PID) Compensators; Designing Type-III Compensator using Gm-C Architecture and Design Example, Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator) Non-Linear Control Techniques for DC-DC Converters; Hysteretic Control	
Design Example, Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator) Non-	
Design Example, Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator) Non-Linear Control Techniques for DC-DC Converters; Hysteretic Control	10hrs
Design Example, Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator) Non-Linear Control Techniques for DC-DC Converters; Hysteretic Control Unit – 3	10hrs

Text Books (List of books as mentioned in the approved syllabus):

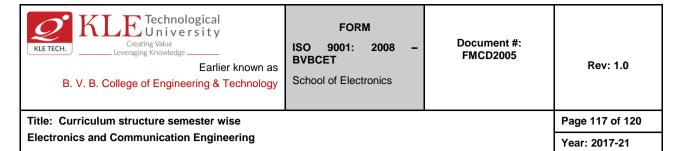
- 1. Switch-Mode Power Supplies: SPICE Simulations and Practical Designs by Christophe P. Basso, McGraw-Hill Professional, 2008.
- 2. Fundamentals of Power Electronics, 2nd edition by Robert W. Erickson, Dragan Maksimovic, Springer, 2001.
- 3. Power Management Techniques for Integrated Circuit Design By Ke-Horng Chen, Wiley-Blackwell, 2016.
- 4. Design of Analog CMOS Integrated Circuits by Behzad Razavi, McGraw-Hill, 2017.

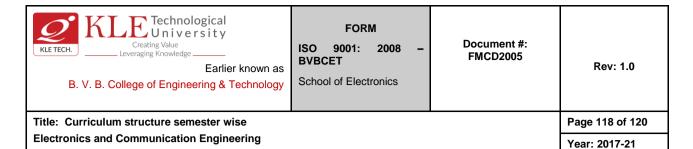

Program: VII Semester Bachelor of Engineering (Elect	ronics & Communication Eng	gineering)	
Course Code: 22EECE424 Course Title: Virtualization and Cloud Comp		uting	
L-T-P: 3-0-0	Credits: 03 Contact Hrs: 03		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100)
Teaching Hrs: 42		Exam Duration:	03hrs
Content	:		Hours
Unit – 1			
Chapter 1. Cloud Computing: Concept, Definition, C	Cloud Types and Service Depl	oyment Models	05hrs
Chapter 2. Virtualization: Concept, Definition, Types of Virtualization, Hardware Virtualization, Full and Para Virtualization, Hypervisors, Hardware-assisted virtualization, operating system level virtualization, application virtualization		10hrs	
Unit – 2	!		
Chapter 3. Virtual and Physical Networking: Networking, virtual LAN	Introduction, Switches, virt	ual NICs, Virtual	05hrs
Chapter 4. Storage Virtualization: Introduction, SAN/NAS versus storage virtualization.		04hrs	
Chapter 5 Virtual Machine Management: Base Virtual Machine, Virtual CPUs, Sockets, Cores, Memory Scaling Up and Scaling Down, USB Support, Virtual Disks, Live Migration. Security		06hrs	
Unit – 3	.		
Chapter 6. Containers: Concept, Definition, Ducker Remote deployment	r, Container versus Virtualiza	ation, Portability,	06hrs
Chapter 7 Applications and Case Studies: Linux KV	/M, Virtual Box, Open stack		06hrs

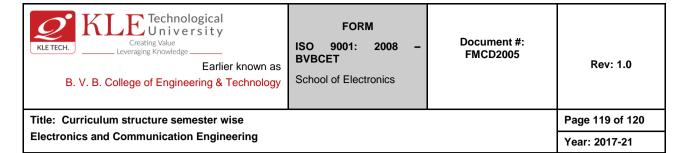
Text Book (List of books as mentioned in the approved syllabus)


- 1. D.E. SARNA (2010), Implementing and Developing Cloud Computing Applications, CRC Press.
- 2. B.S. SODHI (2017), Topics in Virtualization and Cloud Computing, Ropar PB India, 2017.

References


1. B. FURHT, A. ESCALANTE (2010), Handbook of Cloud Computing (Vol. 3), Springer.


Program: VII Semester Bachelor of Enginee	ring (Electronics & Communicat	tion Engineering)		
Course Code: 21EECE425	Course Title: Comp	Course Title: Computer Graphics(IITD-Online)		
L-T-P: 0-0-3	Credits: 03	Credits: 03 Contact Hrs: 03		
ISA Marks: 100	ESA Marks: -	Total Marks: 100 Exam Duration: 03hrs		
Teaching Hrs: 42				
	Content		Hours	
Prof. Saurabh Saxena, IIT Madras			•	
NPTEL				
12 Weeks				
(Starts: 25-07-2022)				
Exam Date: 29 Oct, 2022				
Enrollment Ends: 1 Aug, 2022				


Program: VII Semester Bachelor of Engineering (Electronics & Communication	on Engineering)	
Course Code: 22EECE430	Course Title: Fabrica	•	or MEMs-
L-T-P: 0-0-3	Credits: 03	03 Contact Hrs: 03	
ISA Marks: 100	ESA Marks:	Total Marks: 10	00
Teaching Hrs: 42		Exam Duration:	03hrs
Con	itent		Hours
Prof. Hardik Jeetendra Pandya, IISc Bangalore			Ī
NPTEL			
12 Weeks			
(Starts: 25-07-2022)			
Exam Date: 30 Oct, 2022			
Enrollment Ends: 1 Aug, 2022			

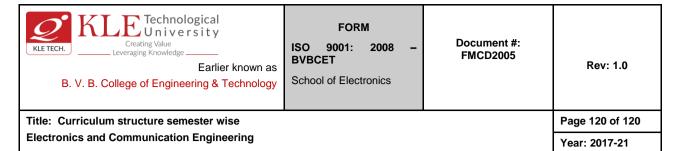
(Swayam)	ography & Network	Security
Credits: 03	Contact Hrs: 03	
ESA Marks:	Total Marks: 100	
	Exam Duration:	03hrs
ent		Hours
		1
	ESA Marks:	ESA Marks: Total Marks: 10 Exam Duration:

Program: VII Semester Bachelor of Enginee	ring (Electronics & Communicat	ion Engineering)	
Course Code: 22EECE432	Course Title: Phase	-locked loops(Swayan	1)
L-T-P: 0-0-3	Credits: 03	Credits: 03 Contact Hrs: 03	
ISA Marks: 100	ESA Marks:	Total Marks: 100 Exam Duration: 03hrs	
Teaching Hrs: 42			
	Content		Hours
Prof. Saurabh Saxena, IIT Madras			Ī
NPTEL			
12 Weeks			
(Starts: 25-07-2022)			
Exam Date: 29 Oct, 2022			
Enrollment Ends: 1 Aug, 2022			

Program: VII Semester Bachelor of Engineeri	ng (Electronics & Communication Engineer	ing)
Course Code: 22EECE433	Course Title: Advanced KLE Tech)	d Computer Graphics (IITD +
L-T-P: 0-0-3	Credits: 03	Contact Hrs: 03
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 42		Exam Duration: 03hrs
	Content	Hours

Advanced Computer Graphics

Subodh Kumar


Professor,

Department of Computer Science and Engineering,

Indian Institute of Technology Delhi.

subodh@cse.iitd.ac.in

#	Topics	Hours
1	Review of Rasterization and Ray tracing	3.0
2	Rendering acceleration data structures	3.0
3	Applications of Texture mapping	3.0
4	Physically based lighting models, global illumination	6.0
5	Multi-pass shading techniques	3.0
6	Surface design and representation (Implicit and Parametric forms)	6.0
7	Mesh Parameterization	
8	Mesh simplification	3.0
9	Animation	6.0
10	Virtual world design	3.0
11	Volume rendering	3.0

Course Code: 22EECE434	Advanced Compu	ter Vision(IITD + KLE Tech)
L-T-P: 0-0-3	Credits: 03	Contact Hrs: 03
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 42		Exam Duration: 03hrs
	Content	Hours

Advanced Computer Vision

Chetan Arora,

Associate Professor,

Department of Computer Science and Engineering,

Indian Institute of Technology Delhi.

chetan@cse.iitd.ac.in

#	Topics	Hours
1	Basics of Machine Learning, and Convolutional Neural Networks	1.5
2	Optimization strategies for training deep neural networks	1.5
3	Advanced Architectures for Image Classification (VGGNet, InceptionNet, ResNet, DenseNet, MobileNets etc.)	3.0
4	Techniques for Visualizing CNNs for Image Analysis	3.0
5	Traditional Techniques for Object Detection (Viola-Jones, Parts based models etc.)	3.0
6	Modern Techniques for Object Detection (Single shot and two shot detectors, keypoint based detectors)	4.5
7	Traditional Techniques for Image Segmentation	3.0
8	Modern Techniques for Image Segmentation	4.5
9	Generating Synthetic Images (AR models, VAEs and GANs)	4.5
10	Vision and Language	4.5
11	Learning Models for Geometrical Vision Problems	3.0
12	Object Tracking	3.0
13	Attack and defense techniques for computer vision systems	3.0